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Introduction Experiments: Gridworld
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In this work, we estimate [3 by maintaining an ensemble of Q functions to —a waLx2
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approximate the uncertainty in Q. This estimated B provides a principled [ " ”  Maaos wf e
temperature schedule that is “softer” when uncertainty is high but gradually v -m -i: fant
1% 151 S — M
becomes "harder” as training proceeds. We experiment in Atari | | N

environments to show the effectiveness of our method in practical discrete
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Rainbow DQN (Hessel et al., 2018) and PPO (Schulman et al., 2017)
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Contributi Right: Value estimation of different correction constant Trained ensembile is able to predict temperature given the data that it is trained on.
ontributions:

This helps the softness of update to be flexible and helps with performance. The
* We provide a principled numerical method for estimating a B term that Tabular UQL is able to converge to the ground truth value with the exact predicted temperature increases (from left to right) with the insanity of artificial
makes the maximum-entropy target value approximately unbiased in same training procedure faster than Q and Double Q. perturbation to the state observation. This can also be extended to other use cases.
SQL.
« We provide extensive experimental results demonstrating that
reducing bias in SQL via our estimated B improves performance.
* We provide a proof of convergence of our method.

Experiments: Atari
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Algorithm: Unbiased Soft Q-Learning (UQL) Mﬂh =
Search for beta by executing a numerical binary search on f. We use an - = - - TEEEEe nmmme  mEmme v ommmme
ensemble to represent a collections of Q. This is an extension of the method . . . astri, eva) biss breskaut, evel bies ma_pacrman, evel bies sescquest, v bios
EQL introduced in Fox. (2019) to discrete multi-action MDP. averaged human normalized score at 500k interactions Y -
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Bellman operator B, given any temperature w, is a contraction in L infinity. The «:« .,.,:,“;. :::W;“ N“::“: = A correction constant should be chosen within (0,1).
tabular version is provably convergent (detail in Appendix A of paper). . N i
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Bo[QW](s,a) = Elr(s. a)] + 1By amp 108 Earury( 3 [ exn(Q (s, )/w)]] « UQL gives a tractable numerical solution to find the temperature of the
" —— s st ' — ' Tha maximum-entropy target
Unbiased Soft Update UQL with no rainbow tricks is able to outperform DQN and Double DQN * Less estimation bias does not necessarily lead to better performance
but gives insights and helps performance empirically
Rainbow GON {reguler) Rainbow DON (same grad frequency) —— * Further separating the introduced methods should give more insights
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