Make the Pertinent Salient: **CONT** University of California, Irvine **Task-Relevant Reconstruction for Visual Control with Distraction** Kyungmin Kim, Charless Fowlkes, and Roy Fox University of California, Irvine

1. Visual Control with Distraction

- Visual control task: Control actions based on visual information.
 > e.g. DeepMind Control suite (DMC)
- Add distractions for a more challenging and realistic setup.

2. Model-Based Reinforcement Learning (MBRL)

- * Cooperation between a world model and behavior learning.
- Promising with great sample efficiency in visual control tasks.
- Often struggles in distracting environments.

Representation learningExamplesDrawbacksReconstruction-basedDreamer [1], etc.Unnecessary

information included

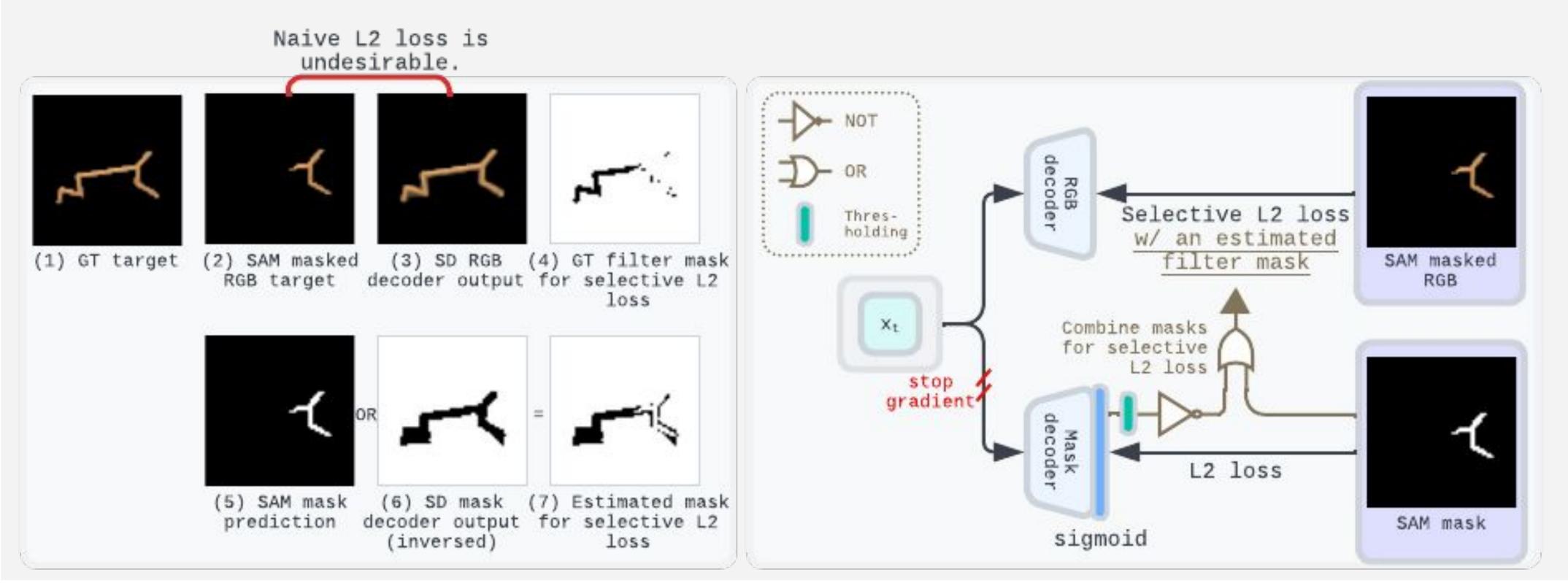
Reconstruction-freeTD-MPC [2],Sample inefficientDreamerPro [3], etc.Sample inefficient

3. Method

- Assumption: Task-relevant components are straightforward to identify within images, given available prior knowledge.
- Use prior knowledge with segmentation foundation models.
- **SD**: Reconstruct **task-relevant** components **only**.
- SD_{GT}: When GT mask for task-relevant components are available.
 SD_{approx}: Use PerSAM [4] fine-tuned with a single data point.

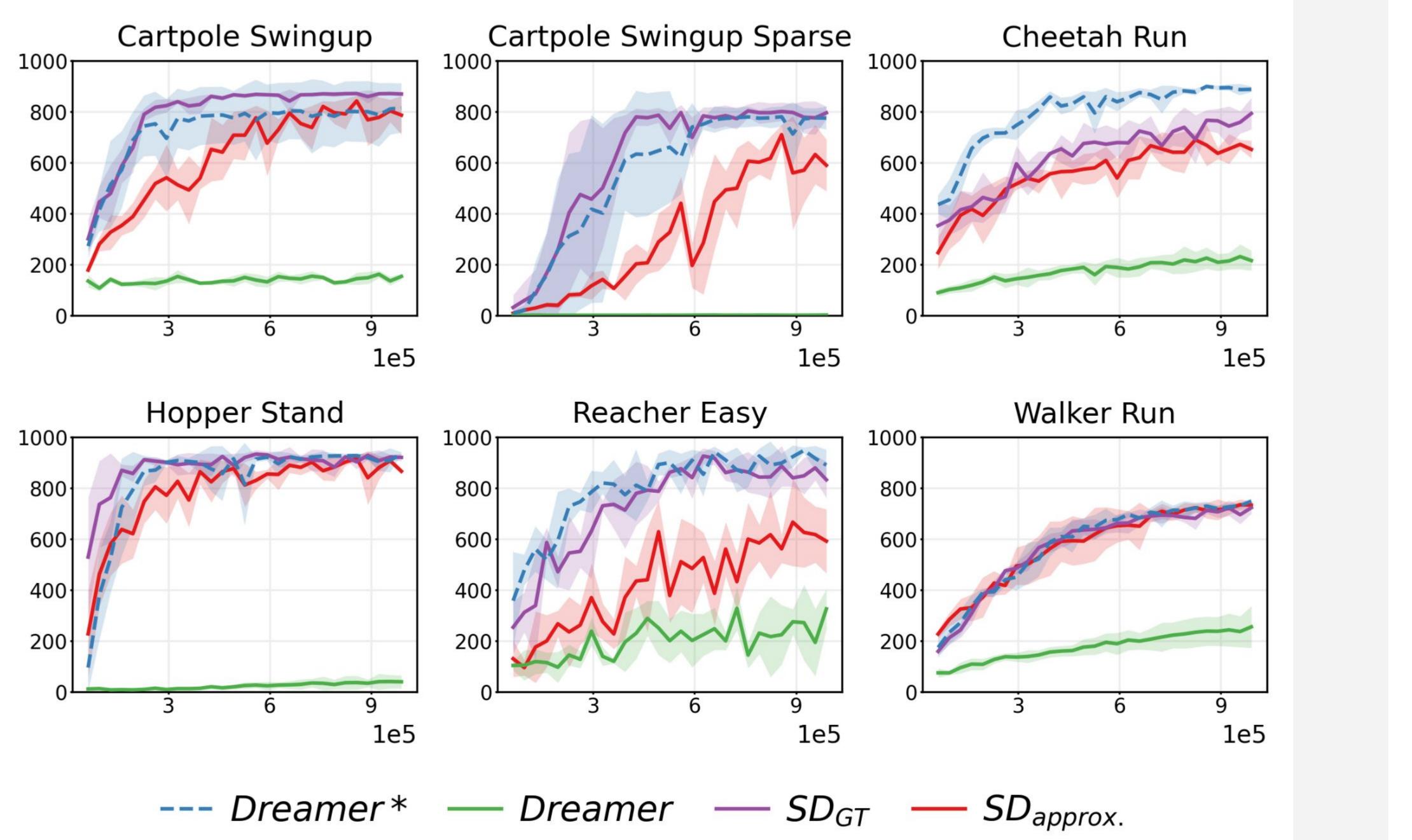
- To make SD_{approx}, more robust to noisy targets, we devise selective L₂ loss.
- Identify pixels where predicted labels may be wrong but the world model decoder is correct, ignoring L₂ loss for such pixels to avoid providing wrong signals.

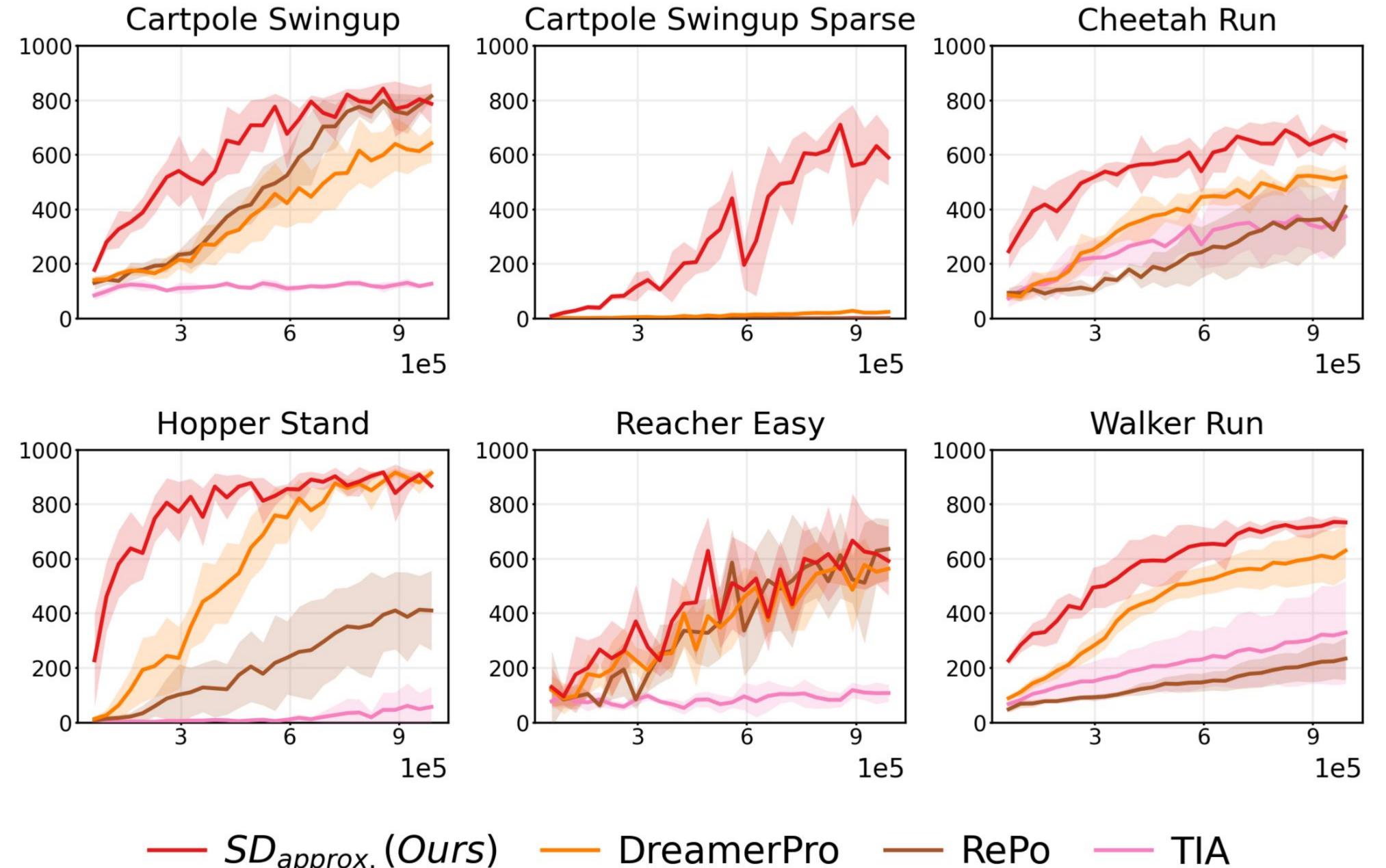
$$mask_{estimate} = mask_{SAM} \vee \neg mask_{SD}$$



(b) SD_{GT} target (c) SD₂ (a) Dreamer target target

4. Experimental Results





Dreamer* is trained in a clean environment whereas the other methods are trained in a distracting environment.
 Overall, SD_{GT} matches Dreamer*, and SD_{approx} eventually reaches SD_{GT} while Dreamer falls short.

5. References

[1] Hafner et al. Mastering diverse domains through world models. arXiv preprint, 2023.

Reconstruction-free methods take lots of samples to converge.
 In sparse reward scenario, only our method achieves compelling performance.

[2] Hansen et al. Td-mpc2: Scalable, robust world models for continuous control. ICLR, 2024.[3] Deng et al. Dreamerpro: Reconstruction-free model-based reinforcement learning with prototypical representations. ICML, 2022.

[4] Zhang et al. Personalize segment anything model with one shot. arXiv preprint, 2023.