Verification-Guided Shielding for Deep Reinforcement Learning

Davide Corsi¹, Guy Amir², Andoni Rodríguez^{3,4}, César Sánchez³, Guy Katz², and Roy Fox¹

¹University of California: Irvine, USA ²The Hebrew University of Jerusalem, Israel ³IMDEA Software Institute, Spain ⁴Universidad Politécnica de Madrid, Spain

Despite their successes, DRL-based policies often suffer from poor reliability on specific corner cases and unexpected input configurations, which limits their use in safety-critical domains. As a case study, we apply our approach to a real-world robot navigation problem combining the strenghts of **shielding** and **verification of DNNs**.

Shielding in Reinforcement Learning

A shield is an external component that can certify every action selected by the agent to guarantee the safety.

Verification of Neural Network

Calling an external nonlinear solver at each time step is **computationally extremely expensive**, preventing a real time execution.

It is unlikely for a neural network to be completely safe for any input, and once declared *UNSAFE, it* cannot be easily fixed.

Verification-Guided Shielding

• Split the input domain into potentially safe regions [2] before a formal verification step on the generated subdomains [1].

• Generation of a provable safe set where the shield is not needed, while the agent is potentially unsafe elsewhere.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving and Symptotic Depresentation stars to reduce the complexity of the optime checking process.
• Chustoving process.
• Chu

Clustering and Symbolic Representation step to reduce the complexity of the online checking process.

Formal Verification of Neural Networks for Safety-Critical Tasks in Deep Reinforcement Learning. <u>D. Corsi</u>, E. Marchesini et al.; UAI 2021.
 The #DNN-Verification problem: Counting Unsafe Inputs for Deep Neural Networks. L. Marzari, <u>D. Corsi</u> et al.; IJCAI 2023.
 Shield Synthesis for LTL Modulo Theories. A. Rodriguez, G. Amir, <u>D. Corsi</u> et al.; arXiv 2024.

Experimental Results								
	1.0-	Mapless Navigation	Seed Full Shield		Verification-Guided Shield		Gain (%)	
				Active Time (%)	Overhead	Active Time (%)	Overhead	
			12	100	$40.0 \times$	28.6	$14.1 \times$	64.8
	0.5-	ſ	66	100	$32.5 \times$	32.4	$13.1 \times$	59.7
			239	100	36.3 imes	44.5	$21.5 \times$	40.7
			251	100	$31.1 \times$	37.6	$13.2 \times$	57.6
			258	100	35.5 imes	33.8	13.9 imes	60.1
			104	100	$4.8 \times$	61.7	3.6 imes	25.1
	0.0- 0	ở 100 200 300 400 500	225	100	4.4 imes	53.1	3.5 imes	20.5
			239	100	$4.5 \times$	2.1	1.8 imes	60.0
			243	100	4.5 imes	1.3	1.6 imes	71.1
			310	100	4.6 imes	3.4	1.5 imes	67.4

This table highlights the advantage of using our approach, we **drastically reduce the number of calls to the solver**, increasing the performance of the agent towards a realtime execution while preserving the safety guarantees.

Future Directions

- ➡Learn the shield during the training loop (eliminating the need to keep it enabled at execution time).
- A novel solution to prove wether a shield can *always* return a valid and safe action.
- An automatic approach to design safety requirements.

