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Abstract

Policy Space Response Oracles (PSRO) is a reinforcement learning (RL) algo-
rithm for two-player zero-sum games that has been empirically shown to find
approximate Nash equilibria in large games. Although PSRO is guaranteed to
converge to an approximate Nash equilibrium and can handle continuous actions,
it may take an exponential number of iterations as the number of information
states (infostates) grows. We propose Extensive-Form Double Oracle (XDO), an
extensive-form double oracle algorithm for two-player zero-sum games that is guar-
anteed to converge to an approximate Nash equilibrium linearly in the number of
infostates. Unlike PSRO, which mixes best responses at the root of the game, XDO
mixes best responses at every infostate. We also introduce Neural XDO (NXDO),
where the best response is learned through deep RL. In tabular experiments on
Leduc poker, we find that XDO achieves an approximate Nash equilibrium in a
number of iterations an order of magnitude smaller than PSRO. Experiments on
a modified Leduc poker game and Oshi-Zumo show that tabular XDO achieves
a lower exploitability than CFR with the same amount of computation. We also
find that NXDO outperforms PSRO and NFSP on a sequential multidimensional
continuous-action game. NXDO is the first deep RL method that can find an
approximate Nash equilibrium in high-dimensional continuous-action sequential
games. Experiment code is available at https://github.com/indylab/nxdo.

1 Introduction

Policy Space Response Oracles (PSRO) [20] is a reinforcement learning (RL) method for finding
approximate Nash equilibria (NE) in large two-player zero-sum games. Methods based on PSRO have
recently achieved state-of-the-art performance on large imperfect-information two-player zero-sum
games such as Starcraft [36] and Stratego [27]. One major benifit of PSRO versus other deep RL
methods for two-player zero-sum games is that it is naturally compatible with games that have
continuous actions. The only other deep RL method compatible with continuous actions, self play,
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is not guaranteed to converge to a Nash equilibrium even in small games like Rock Paper Scissors.
Despite the empirical success of PSRO, in the worst case, PSRO may need to expand all pure
strategies in the normal form of the game, which grows exponentially in the number of information
states (infostates). The reason for this is that PSRO is based on the Double Oracle algorithm for
normal-form games [28], and a mixture of normal-form pure strategies is an inefficient representation
of extensive-form policies.

In this work, we propose a new double oracle algorithm, Extensive-Form Double Oracle (XDO), that
is designed for extensive-form (sequential) games. Like PSRO, XDO keeps a population of pure
strategies. At every iteration, XDO creates a restricted game by only considering actions that are
chosen by at least one strategy in the population. This restricted game is then approximately solved via
an extensive-form game solver, such as Counterfactual Regret Minimization (CFR) [37] or Fictitious
Play (FP) [4], to find a meta-NE, which is extended to the full game by taking arbitrary actions at
infostates not encountered in the restricted game. Next, a best response (BR) to the restricted game
meta-NE is computed and added to the population. XDO can be viewed as a version of PSRO where
the restricted game allows mixing population strategies not only at the root of the game, but at every
infostate.

XDO is guaranteed to converge to an approximate NE in a number of iterations that is linear in the
number of infostates, while PSRO may require a number of iterations exponential in the number
of infostates. Furthermore, on a worst-case family of games for the lower bound on the number of
PSRO iterations, we show that XDO converges in a number of iterations that does not grow with the
number of infostates, and grows only linearly with the number of actions at each infostate.

We also introduce a neural version of XDO, called Neural XDO (NXDO). NXDO can be used in games
that are large enough to benefit from the generalization over infostates induced by neural-network
strategies. NXDO learns approximate BRs through any deep reinforcement learning algorithm. The
restricted game consists of meta-actions, each selecting a population policy to play the next action.
This restricted game is then solved through any neural extensive-form game solver, such as NFSP [14]
or Deep CFR [8]. In our experiments, we use PPO [31] or DDQN [35] for the approximate BR and
NFSP as the restricted game solver. Although convergence guarantees may not apply in such cases,
like PSRO, NXDO is compatible with continuous action spaces.

In games with a large number of actions, NXDO and PSRO effectively prune the game tree and
outperform methods such as Deep CFR and NFSP, which cannot be applied at all with continuous
actions. Additionally, because PSRO might require an exponential number of pure strategies,
NXDO outperforms PSRO on games that require mixing over multiple timesteps. To demonstrate
the effectiveness of our approach on these types of games, we run experiments on two sets of
environments. The first, m-Clone Leduc, is similar to Leduc poker but with every call, fold, and
bet action duplicated m times. The second, the Loss Game, is a sequential continuous-action
multidimensional optimization game in which agents simultaneously adjust parameters to maximize
or minimize a complex loss function. We show that tabular XDO greatly outperforms PSRO, CFR,
and XFP [15] on m-Clone Leduc. We also show that NXDO outperforms both PSRO and NFSP on
m-Clone Leduc and on the continuous-action Loss Game, where NFSP is provided a binned discrete
action space.

To summarize, our contributions are as follows:

• We present a tabular extensive-form double oracle algorithm, XDO, that terminates in a
linear number of iterations in the number of infostates.

• We present a neural version of XDO, NXDO, that outperforms PSRO and NFSP on both
modified Leduc poker and sequential continuous-action games. NXDO is the first method
that can find an approximate NE in high-dimensional continuous-action sequential games.

2 Background

2.1 Extensive-Form Games

We consider partially-observable stochastic games [12] which correspond to perfect-recall extensive-
form games (from here on referred to as extensive-form games). An extensive-form game progresses
through a sequence of player actions, and has a world state w P W at each step. In an N -player
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game, A “ A1 ˆ ¨ ¨ ¨ ˆ AN is the space of joint actions for the players. Aipwq denotes the set of
legal actions for player i P N “ t1, . . . , Nu at world state w and a “ pa1, . . . , aN q P A denotes
a joint action. At each world state, after the players choose a joint action, a transition function
T pw, aq P ∆W determines the probability distribution of the next world state w1. Upon transition
from world state w to w1 via joint action a, player i makes an observation oi “ Oipw, a,w

1q. In
each world state w, player i receives a reward Ripwq.

A history is a sequence of actions and world states, denoted h “ pw0, a0, w1, a1, . . . , wtq, where w0

is the known initial world state of the game. Riphq and Aiphq are, respectively, the reward and set of
legal actions for player i in the last world state of a history h. An infostate for player i, denoted by si,
is a sequence of that player’s observations and actions up until that time siphq “ pa0i , o

1
i , a

1
i , . . . , o

t
iq.

Define the set of all infostates for player i to be Ii. The set of histories that correspond to an infostate
si is denoted Hpsiq “ th : siphq “ siu, and it is assumed that they all share the same set of legal
actions Aipsiphqq “ Aiphq.

A player’s policy πi is a function mapping from an infostate to a probability distribution over actions.
A policy profile π is a tuple pπ1, . . . , πN q. All players other than i are denoted ´i, and their policies
are jointly denoted π´i. A policy for a history h is denoted πiphq “ πipsiphqq and πphq is the
corresponding policy profile. We also define the transition function T ph, ai, π´iq P ∆W as a function
drawing actions for ´i from π´i to form a “ pai, a´iq and to then sample the next world state w1

from T pw, aq, where w is the last world state in h.

The expected value (EV) vπi phq for player i is the expected sum of future rewards for player i in
history h, when all players play policy profile π. The EV for an infostate si is denoted vπi psiq and the
EV for the entire game is denoted vipπq. A two-player zero-sum game has v1pπq ` v2pπq “ 0 for
all policy profiles π. The EV for an action in an infostate is denoted vπi psi, aiq. A Nash equilibrium
(NE) is a policy profile such that, if all players played their NE policy, no player could achieve higher
EV by deviating from it. Formally, π˚ is a NE if vipπ˚q “ maxπi

vipπi, π
˚
´iq for each player i.

The exploitability epπq of a policy profile π is defined as epπq “
ř

iPN maxπ1
i
vipπ

1
i, π´iq. A best

response (BR) policy BRipπ´iq for player i to a policy π´i is a policy that maximally exploits π´i:
BRipπ´iq “ argmaxπi

vipπi, π´iq. An ϵ-best response (ϵ-BR) policy BRϵ
ipπ´iq for player i to a

policy π´i is a policy that is at most ϵ worse for player i than the best response: vipBRϵ
ipπ´iq, π´iq ě

vipBRipπ´iq, π´iq ´ ϵ. An ϵ-Nash equilibrium (ϵ-NE) is a policy profile π in which, for each
player i, πi is an ϵ-BR to π´i.

A normal-form game is a single-step extensive-form game. An extensive-form game induces a
normal-form game in which the legal actions for player i are its deterministic policies

Ś

siPIi
Aipsiq.

These deterministic policies are called pure strategies of the normal-form game. Since each
deterministic policy specifies one action at every infostate, there are an exponential number of
pure strategies in the number of infostates. A mixed strategy is a distribution over a player’s pure
strategies. Two policies π1

i and π2
i for player i are said to be realization-equivalent if for any fixed

strategy profile of the other player, both π1
i and π2

i , define the same probability distribution over the
states of the game.

Theorem 1 (Kuhn’s Theorem [18]). Any mixed strategy in the normal form of a game is realization
equivalent to a policy in the extensive form of that game, and vice versa.

3 Related Work

There has been much recent work on non-game-theoretic multi-agent RL [10, 25, 29, 1]. Most of
this work focuses on games with more than two players such as multi-agent cooperative games or
mixed competitive-cooperative scenarios. In cooperative environments, self-play has empirically
been shown to find an approximate NE [25, 26], but can be brittle when cooperating with agents it
hasn’t trained with [20]. Self-play reinforcement learning has achieved expert level performance on
video games [36, 2, 16], but is not guaranteed to converge to an approximate NE.

Extensive-form fictitious play (XFP) [15] and counterfactual regret minimization (CFR) [37] extend
Fictitious Play (FP) [4] and regret matching [13], respectively, to extensive-form games. Deep
CFR [8, 32, 23] is a general method that trains a neural network on a buffer of counterfactual
values. However, Deep CFR uses external sampling, which may be impractical for games with a
large branching factor, such as Stratego and Barrage Stratego. DREAM [33] and ARMAC [11] are
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model-free regret-based deep learning approaches. DREAM and ARMAC have achieved good results
in poker games, but since they are based on MCCFR, like Deep CFR, they will not scale to games
with continuous actions.

Our work is related to pruning approaches [5, 7]. These methods start with all actions and sequentially
remove actions that have low expected value. XDO instead starts with no actions and sequentially
adds actions. Our work is also related to methods that automatically find abstractions [6, 9].

Close to our work, Bosansky et al. [3] develop a sequence-form double oracle (SDO) algorithm. The
SDO algorithm iteratively adds sequence-form BRs to a population and then computes a meta-Nash
on a restricted sequence-form game where only sequences in the population are allowed. In contrast,
XDO iteratively adds extensive-form BRs to a population and then computes a meta-Nash on a
restricted extensive form game where only actions in the population are allowed. DO, SDO, and XDO
are fundamentally different because they operate on the normal form, sequence form, and extensive
form, respectively. We give a detailed description of the difference between XDO and SDO in the
supplementary materials.

3.1 Neural Fictitious Self Play (NFSP)

Neural Fictitious Self Play (NFSP) [14] approximates XFP by progressively training a best response
against an average of all past policies using reinforcement learning. The average policy is represented
by a neural network and is trained via supervised learning using a replay buffer of past best response
actions. Each episode, both players either play from their best response policy with probability
η “ 0.1 or with their average policy with probability 1 ´ η. This experience is then added to the best
response circular replay buffer and is used to train the best response for both players with off-policy
DQN. If a player plays with their best response policy, the data is also added to the average policy
reservoir replay buffer and is used to train the average policy via supervised learning.

3.2 Policy Space Response Oracles (PSRO)

The Double Oracle algorithm [28] is an algorithm for finding a NE in normal-form games. The
algorithm works by keeping a population of policies Πt at time t. Each iteration a meta-Nash
Equilibrium (meta-NE) π˚,t is computed for the game restricted to policies in Πt. Then, a best
response to this meta-NE for each player BRipπ

˚,t
´i q is computed and added to the population

Πt`1
i “ Πt

i Y tBRipπ
˚,t
´i qu for i P t1, 2u.

Policy Space Response Oracles (PSRO) [20] approximates the Double Oracle algorithm. The meta-
NE is computed on the empirical game matrix UΠ, given by having each policy in the population Π
play each other policy and tracking average utility in a payoff matrix. In each iteration, an approximate
best response to the current meta-NE over the policies is computed via any reinforcement learning
algorithm. Pipeline PSRO parallelizes PSRO with convergence guarantees [27].

3.2.1 PSRO Hard Instance

A primary issue with PSRO is that it is based on a normal-form algorithm, and the number of pure
strategies in a normal-form representation of an extensive-form game is exponential in the number
of infostates. In contrast, our approach implements the double oracle algorithm directly in the
extensive-form game, overcoming this problem and terminating in a linear number of iterations in the
number of infostates. The following example helps illustrate this point.

Consider the game in Figure 1. In this game, first, player 1 chooses which Rock Paper Scissors (RPS)
game both players play. After player 1 chooses the RPS game, both players know which RPS game
they are playing. Then both players simultaneously play an action in that RPS game. There are 6
pure strategies for player 1, denoted R1, P1, S1, R2, P2, S2. But there are 9 pure strategies for player
2. A pure strategy for player 2 specifies what move they play at each infostate. If player 2 played
Rock in the first infostate and Paper in the second, that pure strategy is denoted RP. Note that if we
generalize this game by including more RPS games and more actions in each game, the number of
pure strategies for player 2 will be |A||I|, where |A| is the number of actions and |I| is the number of
RPS games.
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(a) (b) (c)

Figure 1: PSRO hard instance. (a) Player 1 first chooses which RPS game both players play. Both
players know which RPS game they are playing. Then both players simultaneously make their move.
(b) The normal form game. Player 2 has 9 pure strategies. (c) The proportion of PSRO trials that
expanded each possible number of pure strategies for player 2. In the majority of trials, PSRO had to
expand all possible pure strategies.

We conduct an experiment where we run PSRO with oracle BRs on this game with a random starting
population each time. We find that PSRO expands all 9 row (player 2) pure strategies the majority of
the time, expanding all 9 strategies in 122 out of 150 trials. These results are shown in Figure 1c. We
also find that the column player (player 1) expands all 6 pure strategies in all 150 trials.

4 Extensive-Form Double Oracle (XDO)

We propose Extensive-Form Double Oracle (XDO), a double-oracle (DO) algorithm designed for two-
player zero-sum extensive-form games (Algorithm 1). As in other DO algorithms, XDO maintains a
population of pure strategies, and in each iteration computes a meta-NE of this population. Then the
algorithm finds a best response (BR) to the meta-NE and adds it to the population.

In XDO, the population induces a different restricted game, and therefore a different population
meta-NE, than in PSRO [20]. In PSRO, a restricted normal-form game is induced by the empirical
payoff matrix of population strategies. In XDO, a restricted extensive-form game is induced through
a transformation on the original base extensive-form game that restricts the allowed actions at each
infostate to only those suggested by any strategy in the population.

XDO uses a tabular method such as CFR [37] or XFP [15] to solve the restricted game. The algorithm
terminates after an iteration in which neither of the players finds a BR that outperforms the meta-NE.
When this happens, the meta-NE policies are approximate BRs to each other in the original game as
well, and the meta-NE is therefore an approximate NE of the original game.

Importantly, at each but the final iteration of XDO, at least one player adds some new action at some
non-terminal infostate, because a BR cannot outperform the meta-NE with only restricted-game
actions. The number of iterations that XDO takes to terminate is therefore at most the number of
infostates, including terminal ones. In contrast, the best known guarantee for the number of iterations
that PSRO takes to terminate (Proposition 8) is exponential in the number of infostates, because
PSRO may need to add all pure strategies to the population. Moreover, computing the meta-NE in
PSRO may become intractable in later iterations as the population size increases, while in XDO it is
bounded by the unrestricted game.

Formally, XDO keeps a population of pure strategies Πt at time t. Each iteration, a restricted
extensive-form game is created and a NE to the restricted game is computed. The restricted game
is created by taking the original game and restricting the actions at every infostate si to be only the
actions where there exists a policy in the population Πt that chooses that action at that infostate:

Ar
i psiq “ ta P Aipsiq : Dπi P Πt

i s.t. πipsi, aq “ 1u. (1)

An ϵ-NE policy πr˚ is then computed in this restricted game via a tabular method such as CFR
and is extended to the full game by defining arbitrary actions on infostates not encountered in the
restricted game. Next, BRs to this restricted game meta-NE BR1pπr˚

2 q and BR2pπr˚
1 q are computed

via an oracle. These BRs are then added to the population of policies: Πt`1
i “ Πt

i Y BRipπ
r˚
´iq for

i P t1, 2u.
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Algorithm 1 XDO

1: Input: initial population Π0

2: repeat
3: Define restricted game for Πt via eq. (1)
4: Get ϵ-NE policy πr˚ of restricted game
5: Find BRipπ

r˚
´iq for i P t1, 2u

6: if vipBRipπ
r˚
´iq, π

r˚
´iq ď vipπ

r˚q ` ϵ for both i then
7: Terminate
8: Πt`1

i “ Πt
i Y BRipπ

r˚
´iq for i P t1, 2u

Figure 2: Three iterations of XDO (left to right). In these extensive-form game diagrams, player 1
(P1) plays at the root, then P2 plays without knowing P1’s action, and if both played Left P1 plays
another action. P1’s reward is number at the reached leaf. Actions in the restricted game are solid, vs.
dashed outside the restricted game. Meta-NE actions are blue, vs. black not in the meta-NE.

The algorithm terminates when neither player benefits more than ϵ from deviating from the meta-NE
to the BR, indicating that the meta-NE is an ϵ-NE also in the original game (Proposition 1).

To illustrate how XDO works, we demonstrate a simple game in Figure 2. The algorithm starts with
empty populations. At the first iteration (left diagram), player 1 adds a BR that plays Left at the first
infostate (the root) and Right at the second one. Player 2 simultaneously adds a BR that plays Right
at their single infostate. The restricted game now consists of only these added actions. At the second
iteration (middle diagram), player 1 adds a BR that plays Right at both infostates, and player 2’s BR
still plays Right. The restricted game now includes both actions for the root infostate, but only Right
is in the meta-NE. Next, in the third iteration (right diagram), player 1 keeps the same BR, while
player 2’s BR plays Left. In the meta-NE of this final restricted game, player 1 plays Left and Right
with equal probability at the first infostate, and player 2 plays Left with probability 0.37 and Right
with probability 0.63. Since the BRs to this meta-NE do not add any new actions, XDO terminates,
and the meta-NE is the NE for the full game. Note that in this example, most actions are needed to
find a NE. In games like this, it would be faster to simply solve the original game from the beginning.
However, certain games, such as those in our experiments, have Nash equilibria that only need to
mix over a small subset of actions [30], in which case solving the XDO restricted game will be much
faster than solving the original game.

4.1 Theoretical Considerations

In this section, we present a theoretical analysis of XDO and compare it with PSRO. Our first
proposition states that, when XDO terminates, the final meta-NE of the restricted game is an
approximate NE of the full game.

Proposition 1. In XDO with an ϵ1-BR oracle, let πr˚ be the final ϵ2-NE in the restricted game. Then
πr˚ is an pϵ1 ` ϵ2q-NE in the full game.

Proof. Due to limited space, all proofs are contained in the supplementary materials.
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The next two propositions show an exponential gap in the known guarantees for the number of
iterations in which PSRO and XDO terminate. If each non-terminal infostate allows A different
actions, PSRO is guaranteed to terminate in

ř

i A
|Īi| iterations, where Īi is the set of non-terminal

infostates for player i, while XDO is guaranteed to terminate in
ř

i |Ii| iterations.
Proposition 2. Normal-form DO terminates in at most

ř

i

ś

siPIi
|Aipsiq| iterations.

Proposition 3. XDO terminates in at most
ř

i |Ii| iterations.

Tightness of the guarantees. The guarantees in Proposition 8 and Proposition 9 are tight in the
sense that they are achieved in some games, but more nuanced analysis is required to identify easier
cases where these bounds overestimate the complexity of the algorithms. Both PSRO and XDO often
outperform these guarantees and terminate in fewer iterations. A case in which PSRO expands all
pure normal-form strategies of an extensive-form game is described in the supplementary materials.

Figure 3: A 2-GMP game
with n “ 3 actions. The
chance node selects uniformly
at random which generalized
matching pennies game is
played. Both players know
which stage game they play.

XDO can add multiple actions in each iteration. In practice,
XDO often outperforms the guarantee of Proposition 9 because it
adds multiple actions in each iteration. Here we present and analyze
a family of games in which XDO terminates in asymptotically fewer
iterations than suggested by the bound in Proposition 9.

In a generalized matching pennies (GMP) game, both players si-
multaneously choose one of n actions. The payoff to player 1 is
n ´ 1 if the actions match, or ´1 if they are different. In a k-GMP
game (Figure 3), a chance node first selects an index j between 1
and k, and then the players play the j’th of k identical GMP games.
The following proposition provides a tighter performance bound for
XDO in this case, 2n iterations instead of

ř

i |Ii| “ 2kpn`1q (there
are kn terminal infostates for each player). For PSRO on k-GMP,
no tighter bound than the 2nk indicated by Proposition 8 is known.
Proposition 4. In k-GMP with n actions, XDO terminates in 2n
iterations.

Size of the restricted game. The number of iterations in each algorithm does not provide the
full picture of their performance, since iterations can require vastly different computation times.
Intuitively, the restricted game in XDO is much larger than in PSRO when both algorithms have the
same population size, because XDO induces an extensive-form restricted game with all discovered
actions, while PSRO induces a normal-form restricted game with population policies as actions.
However, as both algorithms progress, the XDO restricted game is bounded in size by the original
game, while PSRO can induce a game with exponentially many actions.

XDO for sparse-support policies. XDO is useful when the policies in the population do not cover
the full original game, because when they do, finding the restricted game meta-NE is as hard as
solving the original game. The motivation behind XDO is that, in games where the NE policies are
supported by few actions in most infostates, XDO has the potential to quickly find these actions and
terminate without expanding the full game.

To analyze this behavior, consider the m-clone GMP game, in which there are mn actions partitioned
into n equal classes. The actions of the two players are considered a match (with payoff n ´ 1 to
player 1) if they belong to the same class. In pk,mq-clone GMP, a chance node selects among k
identical m-clone GMP games. The following proposition states that in pk,mq-clone GMP with n
classes, XDO terminates after adding at most 2n actions for each player, instead of the full game of
kmn actions.
Proposition 5. In pk,mq-clone GMP with n classes, XDO adds at most 2n actions for each player.

PSRO lower bound. Similarly to XDO, PSRO can also outperform the guarantee of Proposition 8
in certain cases. Generically, however, the linear upper bound on XDO established by Proposition 9,
ř

i |Ii|, is also a lower bound on the normal-form population size of pure strategies that is needed to
support a NE in PSRO. To show this, consider a perturbed k-GMP game, in which the payoffs in
each GMP game are slightly modified to induce k distinct NE. The following proposition establishes
a linear lower bound for PSRO in perturbed k-GMP games.
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Algorithm 2 NXDO

1: Input: initial population Π0

2: repeat
3: Define restricted game for Πt via eq. (2)
4: Get ϵ-NE policy πr˚ of restricted game via NFSP
5: Find BRipπ

r˚
´iq for i P t1, 2u via DRL

6: Πt`1
i “ Πt

i Y BRipπ
r˚
´iq for i P t1, 2u

Proposition 6. There exist perturbed k-GMP games with n actions in which PSRO cannot terminate
in fewer than kpn ´ 1q ` 1 iterations.

5 Neural Extensive-Form Double Oracle (NXDO)

Neural Extensive-Form Double Oracle (NXDO) extends XDO to large games through deep reinforce-
ment learning (DRL). Instead of using an oracle best response, NXDO instead uses approximate
best responses that are trained via any DRL algorithm, such as PPO [31] or DDQN [35]. Instead of
representing the restricted game explicitly as the set of allowed actions in every infostate, to create its
restricted game, NXDO replaces the original game action space with a discrete set of meta-actions,
each corresponding to a population policy to which the actual action choice is delegated.

Formally, NXDO (Algorithm 2) keeps a population of DRL policies Πt at time t. Each iteration, a
restricted extensive-form game is created and a meta-NE to the restricted game is computed. The
restricted game has meta-actions at every infostate that pick one policy from the population

@si P Ii Ar
i psiq “ t1, 2, ..., |Πt

i|u. (2)

While the action space differs, the restricted game states, observations, and histories remain the
same as in the original game. After each player selects a meta-action that indicates a population
policy, an action is sampled from that population policy and used for the world state transition.
With π1

i , . . . , π
|Πi|

i the population policies for player i, the transition function in the restricted game
satisfies

T rph, ar, w1q “
ÿ

a

ź

i

π
ar
i

i psiphq, aiqT ph, a, w1q. (3)

With the restricted game thus defined, an ϵ-meta-NE πr˚ is computed in this restricted game via
a DRL method for finding NE, such as NFSP [14] or DREAM [33]. Approximate BRs BR1pπr˚

2 q

and BR2pπr˚
1 q to this meta-NE are computed via a DRL algorithm, such as PPO or DDQN. These

BRs are then added to the population of policies: Πt`1
i “ Πt

i Y BRipπ
r˚
´iq for i P t1, 2u. Provided

that the DRL best responses are sufficiently close to oracle best responses and the inner-loop
solver finds a sufficiently close approximate NE of the restricted game, NXDO inherits the same
convergence properties as XDO. In practice, contemporary DRL methods lack any guarantee of
providing approximate NE or BRs. Nevertheless, we show experimentally that exploitability can
decrease through execution of NXDO faster than it does for PSRO and NFSP.

Because the original game action space has no influence on the NXDO restricted game action space,
NXDO, like PSRO, is compatible with extremely large and continuous action spaces, provided
that the deep RL BRs can operate in such an action space well. We demonstrate this capability in
our Loss Game experiments, in which NXDO and PSRO use continuous-action PPO BRs. While
no convergence guarantees are known in continuous-action games, NXDO and PSRO empirically
produce meta-Nash strategies that are hard to exploit in our experiments.

A drawback of meta-actions that delegate actions to population policies is that, as in PSRO, the
number of meta-actions grows linearly with the number of iterations. This can eventually make the
restricted game harder to solve than the original game. In our experiments, however, NXDO achieves
significant improvements in exploitability within a very small number of iterations, such that the
issue of action delegation does not become an obstacle. In discrete action space games where it is
tractable, we also consider a variant, NXDO-VA, where the restricted game is explicitly calculated
and defined with valid and invalid original-game actions in the same way as with tabular XDO, using
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Figure 4: (a) Exploitability in Leduc poker of XDO vs. PSRO, SDO, and XFP with oracle BRs
throughout their iterations; (b) Exploitability in 2-Clone Leduc poker as a function of the number of
game states visited by XDO, SDO, CFR`, and MCCFR with external sampling (ES); (c) Exploitability
in Oshi-Zumo as a function of the number of game states visited by XDO, SDO, CFR`, and
MCCFR-ES

equation (1). Because its restricted game action space size is at most equal to that of the original
game, NXDO-VA does not suffer from the aforementioned drawback.

6 Experiments

For the tabular experiments, we use XDO with an oracle best response (BR) and CFR` [34] for the
inner-loop meta-NE solver. We compare XDO with PSRO [20] and XFP [15], which use oracle BRs
as well. We also compare with CFR`, and for both CFR` and XFP we follow the implementations
in OpenSpiel [22]. We compare to SDO, using the same oracle BR and meta-NE solver as XDO.
Since CFR`, XFP, SDO, and XDO are deterministic, we do not plot error bars for these algorithms.
For the neural experiments, we use NXDO with NFSP [14] as the meta-NE solver and PSRO with
FP [4] as the meta-NE solver. NXDO and PSRO share the same BR configuration, using DDQN [35]
for discrete action spaces and PPO [31] for continuous action spaces. We compare these algorithms
on m-Clone Leduc poker, Oshi-Zumo, and the Loss Game, described in the supplementary materials.

6.1 Tabular Experiments with XDO

Finding a normal-form meta-NE can be much less efficient and more exploitable than finding an
extensive-form meta-NE. This means that PSRO will often require many more pure strategies to
achieve a similar level of exploitability to XDO. Figure 4a summarizes the results of running XDO,
SDO, XFP, and PSRO with an oracle BR on Leduc poker. Even after 150 iterations, PSRO remains
significantly more exploitable than XDO is at 7 iterations. XDO achieves exploitability of 0.1 in
over 20x fewer iterations than PSRO. In large games where calculating many approximate BRs via
reinforcement learning is expensive, requiring vastly more iterations can render PSRO infeasible.
XFP performs similarly to PSRO in Leduc, as its average policy is equivalent to uniformly mixing
population strategies at the root of the game. SDO takes more iterations than XDO to achieve low
exploitability, because it adds fewer actions to the restricted game per iteration.

We compare XDO with SDO, CFR`, and MCCFR [19] in 2-Clone Leduc poker. In Figure 4b, we
plot the exploitability of these algorithms as a function of the number of game states visited by the
algorithms. Since XFP and PSRO only use BR oracles, we do not include them in this analysis.
Since CFR` updates every infostate every iteration, as we increase the number of cloned actions,
the performance of CFR` will deteriorate. In contrast, XDO will tend to not add cloned actions,
which allows the inner-loop CFR` to expand fewer infostates. These results for XDO are with a
deterministic best response oracle. We found that if XDO randomly chose a best response instead,
then XDO would still outperform CFR`, but not by as much. The results in Figure 4c suggest that
on Oshi-Zumo XDO outperforms SDO, MCCFR, and, to a lesser degree, CFR`. We do not include
XDO with MCCFR as the inner loop solver because it did not perform as well as XDO with CFR`.

6.2 Neural Experiments with NXDO

In Figure 5a, we compare the exploitability of NXDO and NXDO-VA with PSRO and NFSP on
20-Clone Leduc poker. DDQN is used to train NXDO and PSRO BRs. Similar to the tabular
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Figure 5: (a) Exploitability in 20-Clone Leduc poker of NXDO, NXDO-VA, PSRO, and NFSP as a
function of episodes gathered; (b and c) Approximate exploitability as a function of episodes gathered
in the continuous-action Loss Game of NXDO, PSRO, and NFSP (with binned discrete actions).

experiments, we find that NXDO outperforms both methods. However, we find that the margin
by which NXDO outperforms these methods is smaller than in tabular experiments. This can be
attributed to the large proportion of experience required by NFSP to solve the restricted game relative
to experience spent learning BRs. Training details and an analysis on the proportion of experience
spent in the inner vs outer loop of NXDO are included in supplementary materials.

We also test NXDO and PSRO on the 2D and 16D continuous-action Loss Game, shown in Figures
5b and 5c respectively. PPO is used to train NXDO and PSRO BRs. In the 2D action space game, we
compare to NFSP with a binned discrete action space. Because calculating exact exploitability is
intractable for the Loss Game, for each algorithm checkpoint, we measure approximate exploitability
by training a continuous-action PPO best response against it until saturation and measuring the BR’s
final mean reward. NXDO outperforms NFSP in the 2D game while operating in a continuous action
space and outperforms PSRO in the 2D and 16D game which we conjecture is due to more effective
use of population strategies in its restricted game.

7 Conclusion

PSRO and NXDO are the only existing game-theoretic deep RL methods that can work on large
continuous-action games. In games where the NE must mix in many infostates, but only a small
fraction of all actions are in the support of the NE at each infostate, we expect XDO and NXDO
to outperform PSRO, because PSRO may require a superlinear, or even exponential number of
pure strategies. We also expect XDO and NXDO to outperform CFR and NFSP, respectively, on
discrete-action games where the NE only needs to mix over a small fraction of actions. This is
because CFR and NFSP scale poorly with the number of actions in the game, but XDO and NXDO
tend to discover a set of relevant actions and ignore actions that are dominated or redundant. We
hypothesize that games with these properties are prevalent across a number of domains such as large
board games, video games, and robotics applications.
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A Proofs

Proposition 7. In XDO with an ϵ1-BR oracle, let πr˚ be the final ϵ2-NE in the restricted game. Then
πr˚ is an pϵ1 ` ϵ2q-NE in the full game.

Proof. For each i P t1, 2u, let BRϵ1
i pπr˚

´iq be player i’s ϵ1-BR to πr˚
´i obtained in the last iteration.

By the termination condition

vipπ
r˚q ě vipBRϵ1

i pπr˚
´iq, π

r˚
´iq ´ ϵ2 (4)

ě max
π1
i

vipπ
1
i, π

r˚
´iq ´ ϵ1 ´ ϵ2, (5)

where the last inequality follows from BRϵ1
i pπr˚

´iq being an ϵ1-best response to πr˚
´i.

Proposition 8. Normal-form DO terminates in
ř

i

ś

siPIi
|Aipsiq| iterations.

Proof. In each iteration of DO, at least one player adds a new normal-form pure strategy to the
population. The space of pure strategies for player i has size

ś

siPIi
|Aipsiq|, because each normal-

form pure strategy specifies an action at each infostate for that player.

Proposition 9. XDO terminates in
ř

i |Ii| iterations.

Proof. Consider an infostate s1
i “ pa0i , o

1
i , . . . , a

t
i, o

t`1
i q for player i as covered in the restricted game

if any of player i’s population policies chooses action ati in infostate si “ pa0i , o
1
i , . . . , a

t´1
i , otiq. At

each but the final iteration, at least one player i has vipBRipπ
r˚
´iq, π

r˚
´iq ą vipπ

r˚q ` ϵ. Since πr˚
i is

an ϵ-BR to πr˚
´i in the restricted game, the BR BRipπ

r˚
´iq must be choosing at least some action ai

at some non-terminal infostate si that was not previously chosen by any population policy. Adding
this action to the restricted game covers at least one previously uncovered infostate: all infostates
s1
i “ psi, ai, oiq, for any observation oi. All infostates will therefore be covered in at most

ř

i |Ii|
iterations, at which point the next iteration must terminate.

Proposition 10. In k-GMP with n actions, XDO terminates in 2n iterations.

Proof. In a given iteration, consider the restricted game for a single GMP game. If player 2 is allowed
an action that player 1 is not, such an action will be player 2’s NE, and player 1’s BR will add that
action. If player 2 is not allowed an action unavailable to player 1, player 2’s BR will be a new action
unavailable to player 1, if one exists. Thus at least one of the players add a new action in every GMP
game in parallel, until both players add all actions.

Proposition 11. In pk,mq-clone GMP with n classes, XDO adds at most 2n actions for each player.

Proof. The proof repeats that of Proposition 10, but considering classes instead of actions, because it
does not matter which member of a class is added. Once at least one member of each class is added
to the restricted game, the meta-NE has full-game exploitability 0, and XDO terminates. In iterations
where a BR for a player does not add a new class, it may add a new action member of an existing
class. In total, 2n actions may be added for each player.

Proposition 12. There exist perturbed k-GMP games with n actions in which PSRO cannot terminate
in fewer than kpn ´ 1q ` 1 iterations.

Proof. For each policy π2 P p∆pnqqk for player 2, consider the perturbed k-GMP game that gives
player 1 payoff 1

π2pj,aq
for matching action a in stage game j. In the NE for this game, player 2 has

policy π2. This implies that the set of policies that are NE of any perturbed k-GMP game has positive
kpn ´ 1q-dimensional volume.

Consider the space of stochastic policies that can be spanned by mixing a specific population of
at most kpn ´ 1q pure strategies. The dimension of this space is at most kpn ´ 1q ´ 1. When we
consider the union of all such spaces for the finitely many possible populations of this size, this set
has zero kpn ´ 1q-dimensional volume.
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(a) SDO [3]

(b) XDO

Figure 6

It follows that there exists a perturbed k-GMP game G, and a neighborhood around player 2’s policy
in the NE of G, such that no policy in that neighborhood is spanned by any population of kpn ´ 1q

pure strategies. For sufficiently small ϵ, no ϵ-NE for G can be found until PSRO adds at least
kpn ´ 1q ` 1 pure strategies to its population.

B Comparison to SDO

To illustrate the difference between the two algorithms, we provide an example run of XDO (Figure
6b) and SDO (Figure 6a) on the same game that is presented as an example in section 4.1.3 in the
SDO paper [3].

Like in that work, we represent actions that are in the restricted game by bold arrows. This example
demonstrates how SDO creates smaller restricted games than XDO because it only considers infostates
that can be reached by compatible sequences. In tabular games, SDO results in a cautious approach
that only considers a small subset of infostates in order to prevent adding suboptimal actions to the
restricted game. However, as we describe below, this will cause obstacles when trying to scale SDO
to large games.

Extensive-form pure strategies specify an action at every infostate. In this example we will refer
to extensive-form pure strategies by concatenating the actions the strategy takes in every infostate.
For example, the pure strategy for the circle player in step 1 in our diagram corresponds to ADFH.
Sequence-form pure strategies specify a sequence of actions that must be internally consistent. For
example, tH, A,ADu is a valid sequence-form pure strategy but tH, B,ADu is not.

In step 0, both SDO and XDO start with an empty game tree. Let’s assume that the default strategy
for both algorithms is uniform random.

In step 1, both SDO and XDO add the same best responses to the default strategy for both players.
However, SDO adds actual sequences of actions, in particular tH, A,ADu for the circle player and
tH, yu for the box player. Since the AD sequence of actions for the circle player is not compatible
with the y action for the square player, the restricted game is the game with A as the available action
for circle and y as the available action for square. But since neither AE nor AF are in the sequence
population, the restricted game in SDO at this step terminates in a temporary leaf at that point.

In contrast, XDO adds full extensive form strategies, in this case adding ADFH for the circle player
and y for the square player. Now the restricted game for XDO is as in step 1 in the diagram. Since
XDO adds full extensive form strategies, there is no need to create a temporary leaf node.

After only one iteration, SDO and XDO result in a different restricted game. This is because SDO
adds sequences of actions (best responses in sequence form) to the population while XDO adds a
pure strategy defined at every infostate (best responses in extensive form). The SDO restricted game
is much smaller than the XDO restricted game because SDO only considers infostates that can be
reached by compatible sequences in the population. There are three more steps for SDO, which are
described in their paper. XDO has only two more steps, which are described in the figure.
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There currently exists one main algorithm that can scale up the double oracle approach to large games
through deep reinforcement learning, which is PSRO. We propose another, Neural Extensive-Form
Double Oracle (NXDO). Similarly extending SDO to large games via neural networks is one possible
direction for future work.

C Empirical Tests on Perturbed k-GMP

Figure 7: Exploitability vs wall time hours with XDO, XFP, PSRO, and CFR in Perturbed k-GMP as
the number of subgames rises. XDO and CFR scale well even when there are many subgames while
PSRO becomes unable to reach a low exploitability.

We run XDO, XFP, PSRO (DO) and CFR on the Perturbed k-GMP games. In perturbed k-GMP, a
chance node randomly selects one of the k stage games and the outcome is observed by both players.
A static perturbation uniformly sampled between p´1.0, 1.0q is added to every GMP payoff where
both players select the same action to create a unique equilibrium solution for each of the k subgames.
We see that as k is increased from 2 to 128, XDO and CFR exploitability increases but remains
relatively low, but PSRO performance relative to computation time dramatically decreases. For this
experiment, we use CFR as the meta-NE solver for XDO.

D Game Descriptions

m-Clone Leduc poker: m-Clone Leduc poker is similar to Leduc poker but with every action
duplicated m times, such that instead of a single call, fold, and bet action there are m identical call,
fold, and bet actions. As the number of cloned actions increases, we expect the performance of
methods based on CFR and FP such as DREAM and NFSP to deteriorate, while the performance of
XDO and PSRO remains largely unchanged because the size of the restricted games scale with the
size of the meta-game population rather than the size of the action space.

Oshi-Zumo Oshi-Zumo is a zero-sum two-player sequential game where both players try to move
a token to the other player’s side of the board. Both players start with an allotment of coins and each
step simultaneously bet an amount of coins. The player who bets the higher amount gets to move the
token toward the opponent. A player wins if they are able to move the token off the board on their
opponent’s side or if the token is on the opponent’s side when either no more coins remain or the
time horizon is reached. Reward is 1 for wining, -1 for losing, and 0 for a tie, which can occur when
the token is in the middle of the board when the game ends. We consider a variant with 4 coins, and a
board of 3 spaces with a time horizon of 6.

Loss Game: The Loss Game is a zero-sum two-player sequential continuous action game in
which agents simultaneously apply bounded adjustments to a real valued vector of parameters
x “ rx1, . . . , xds in order to optimize a fixed loss function’s scalar output L : Rd ÞÑ R . One agent
aims to maximize this output while to other aims to minimize it. Each timestep, agents observe
the current vector of parameter values along with the function’s scalar output value and provide a
bounded continuous action describing an adjustment vector to add to the current parameters. The
sum of both agents’ adjustments is applied and player 1 is rewarded with the value of the function’s
output while player 2 is provided with the negative of this value. The game lasts 10 steps and the
parameters’ adjusted values are preserved after each step.

We consider a 2D action space variation with the loss function Lpx1, x2q “
ř

j sinpxjq and a 16D
action space variation with Lpx1, . . . , x16q “ sinp

ř

j xjq `
ř

j sinpxjq{16. These functions were
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chosen to demonstrate games in which it is advantageous to mix between multiple strategies in many
infostates. The 2 and 16 dimensional action spaces where chosen to represent continuous spaces that,
respectively, can and cannot be directly binned into a tractable amount of discrete actions. We test
the binned discrete action version of the 2D continuous action space Loss Game with both 10 and
100 bins in each of the two dimensions , totalling 100 and 10,000 actions respectively.

E Tabular Experiment Details

For calculating tabular BRs, we use an oracle implementation supplied by the OpenSpiel framework
[21].

For tabular PSRO, we use linear programming to solve each meta-NE. To calculate the empirical
payoff matrix, we play 100 games per policy combination.

For CFR`, CFR, MCCFR, and XFP, we use the default implementations and settings provided by
OpenSpiel.

For tabular XDO, we repeatedly improve the ϵ-NE (e.g. perform CFR iterations) for the restricted
game until both of the following conditions are met: a) the exploitability of the meta-NE in the
restricted game is less than ϵ, and b) the exploitability of the meta-NE in the restricted game is less
than the exploitability of the meta-NE in the full game. We initialize ϵ to be 0.35, and each XDO
iteration, we set ϵ to 0.98 ˚ ϵ.

This has two benefits: First, we guarantee that all BRs added to the population are useful, in that they
contain at least some out-of-restricted-game action, and thus expand the restricted game. Second,
if the restricted game already contains the actions necessary for a NE in the full game, we simply
continue to improve the meta-NE ad infinitum, rather than add a new BR and restart the meta-NE
solver.

For SDO, we use CFR+ as an inner-loop solver, instead of a linear program as used in the SDO paper
[3]. The default pure strategy we use is to choose the first possible action. To find best-response
sequences, we compute a tabular BR in the full game.

Unless otherwise stated, all non-deterministic tabular experiments were run with 3 seeds each.

F Neural Experiment Details

For reinforcement learning neural experiments, we use DDQN for discrete action spaces and PPO for
the Loss Game continuous action space. The NFSP RL policy is also trained with DDQN. All neural
experiments were run with 3 seeds each.

F.1 Best Response Stopping Conditions

In both 20-Clone Leduc Poker and the Loss Game, BRs in PSRO and NXDO are trained for a
minimum of 4e4 episodes and a maximum of 1e5 episodes. Every 2e4 episodes, a check is performed
as to whether the average episode reward is at least 0.01 higher than it was in the last check. If
this check fails, the BR is considered plateaued and is stopped early. This stopping condition was
chosen to ensure that BRs are allowed to saturate in performance without spending a redundantly
large amount of episodes training.

F.2 Meta-NE Solver Stopping Conditions

For NXDO, we use NFSP as the meta-NE solver. Similar to tabular XDO, we increase the amount
of experience allocated to solve the meta-NE over multiple NXDO iterations. This is done because
adding additional diverse BR policies to the population in early iterations of NXDO is more effective
than spending a large (or any) amount of time solving for the restricted game meta-NE with a very
small population. In addition to a schedule used to increase the amount of training the for meta-NE
solver, for the first n NXDO iterations, we execute a "warm-start" in which we use an untrained
NFSP average policy network in lieu of training the meta-NE. After n warm start iterations, we train
NFSP to solve for the meta-NE with a schedule that gradually increases the amount of experience
NFSP is allocated for training each NXDO iteration. As the NXDO population grows larger, it is
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advantageous to train the meta-NE solver for longer because the restricted game solution will better
approximate the original game NE. We use two different meta-NE stopping condition schedules for
20-Clone Poker and the Loss Game, described below:

The meta-NE stopping condition schedule used for NXDO on 20-Clone Poker solves for an ϵ-NE of
the restricted game, where ϵ is decreased over NXDO iterations. After 7 warm start iterations, ϵ is
initialized at 1.0, and, each NXDO iteration, ϵ is halved if the final average reward of the previous
iteration’s BRs is below pϵ ` 0.05q. ϵ is not allowed to fall below 0.05. The exact stopping condition
for NFSP in the inner loop of NXDO is to train for at least 2e5 episodes and then stop when the mean
DDQN BR reward against average policies falls below ϵ.

A simpler schedule is used for NXDO on the Loss Game. After 5 warm start iterations, we train
NFSP on the restricted game for 1e6 time steps. In each subsequent NXDO iteration, the amount of
time steps allocated to training NFSP meta-NE solver in the new iteration is the previous amount
multiplied by a coefficient of 1.5.

When solving the normal-form restricted game in PSRO, we calculate the meta-NE by running FP for
2000 iterations on the empirical payoff metric between population policies. To calculate the empirical
payoff matrix, for each policy combination, we play 3000 games for m-Clone Leduc or 1000 games
for the Loss Game. Empirical payoff matrix evaluations for PSRO are not counted when measuring
experience used to train.

F.3 Training Hyperparameters

For 20-Clone Leduc, we used the OpenSpiel Leduc NFSP implementation as a starting point for our
hyperparameters. We then adjusted our learning rate, batch size, and rollout steps to allow better
wall-time speed through parallelization while maintaining roughly the same sample efficiency as the
OpenSpiel reference. The same hyperparameters are used for the 20-Clone Leduc NXDO meta-NE
solver and NFSP on the base 20-Clone Leduc game.

When training for the Loss Game, aside from the network architecture and epsilon greedy annealing
period, the same NFSP hyperparameters were reused when training the NXDO meta-NE solver.
Because the binned discrete action Loss Game is much more complex than the induced NXDO
restricted game, new DDQN hyperparameters were found for NFSP on the original game using a
random search of 50 samples over a space defined in table 8. DDQN hyperparameter trials were
performed by training and measuring performance against a fixed adversary.

DDQN uses epsilon-greedy exploration. For 20-Clone Leduc experiments, in NFSP (both on the base
game and restricted game), the epsilon exploration parameter is linearly annealed from 0.06 to 0.001
over 20e6 timesteps. In PSRO and NXDO, where BRs train over shorter periods, epsilon is linearly
annealed from 0.20 to 0.001 over 1e5 timesteps. For NFSP in the Loss Game (both on the base game
and restricted game) the epsilon exploration parameter is annealed from 0.06 to 0.001 over 500e6
timesteps. For all DDQN uses, learning does not start until 16,000 steps have been collected in the
circular replay buffer.

Hyperparameters for Loss Game PPO BRs used by NXDO and PSRO were found in a random search
of 50 samples over a space defined in table 9. Like DDQN, PPO hyperparameter trials were performed
by training and measuring performance against a fixed adversary. The same hyperparameters were
used in both variations of the Loss Game.

Approximate exploitability in the Loss Game was measured by training a continuous-action PPO BR
against each meta-NE (for NXDO and PSRO) or average policy (for NFSP) checkpoint and measuring
the final average reward. These BRs share the same hyperparameters and stopping conditions as
those used to train NXDO and PSRO.

Tables 1 through 7 display parameters used. Our deep RL implementations for NFSP, PSRO, and
NXDO are built on top of the open source RLlib framework. [24]. Any parameters not listed were
set to the RLlib 1.0.1 default values.

All RL algorithms use the Adam optimizer [17] with ϵ set to 1e-8 and 4 parrallel experience workers
with 1 environment per worker. A discount factor of 1.0 is used in all games. For 20-Clone Poker, all
algorithms used a fully-connected network with two layers of size 128 and relu activations. For the
Loss Game, two layers of size 32 and tanh activations were used.
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circular buffer size 2e5
total rollout experience gathered each iter 1024 steps
learning rate 0.01
batch size 4096
TD-error loss type MSE
target network update frequency every 10,000 steps

Table 1: 20-clone Leduc DDQN hyperparameters (Used by NXDO BRs and meta-NE solver, PSRO
BRs, base game NFSP)

RL learner params DDQN, see Table 1
anticipatory param 0.1
avg policy reservoir buffer size 2e6
avg policy learning starts after 16,000 steps
avg policy learning rate 0.1
avg policy batch size 4096
avg policy optimizer SGD

Table 2: 20-clone Leduc NFSP hyperparameters (Used by base game NFSP, NXDO meta-NE solver)

GAE λ 1.0
entropy coeff 0.01
clip param 0.2
KL target 0.01
learning rate 5e-4
train batch size 2048
sgd minibatch size 256
num sgd iters on train batch 30
separate policy and value networks Yes
continuous action range [-1.0, 1.0] for each dim

Table 3: Loss Game Continuous Action PPO hyperparameters (Used by NXDO BRs, PSRO BRs)

circular buffer size 2e5
total rollout experience gathered each iter 1024 steps
learning rate 0.01
batch size 4096
TD-error loss type MSE
target network update frequency every 10,000 steps

Table 4: Loss Game NXDO meta-NE DDQN hyperparameters (Used by NXDO meta-NE solver)

RL learner params DDQN, see Table 4
anticipatory param 0.1
avg policy reservoir buffer size 2e6
avg policy learning starts after 16,000 steps
avg policy learning rate 0.1
avg policy batch size 4096
avg policy optimizer SGD

Table 5: Loss Game NXDO meta-NE NFSP hyperparameters (Used by NXDO meta-NE solver)
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circular buffer size 1e5
learning starts after 16,000 steps
total rollout experience gathered each iter 64 steps
learning rate 0.007
batch size 4096
TD-error loss type MSE
target network update frequency every 1e5 steps

Table 6: Loss Game NFSP DDQN hyperparameters (Used by base game NFSP)

RL learner params DDQN, see Table 6
anticipatory param 0.1
avg policy reservoir buffer size 2e6
avg policy learning starts after 16,000 steps
avg policy learning rate 0.07
avg policy batch size 4096
avg policy optimizer SGD

Table 7: Loss Game NFSP hyperparameters (Used by base game NFSP)

circular buffer size {5e4, 1e5, 2e5}
total rollout steps gathered each iter {16, 32, 64, 128}
learning rate log-uniform([0.0001, 0.1])
batch size {1024, 2048, 4096}
target network update frequency {1e3, 1e4, 1e5}

Table 8: Loss Game DDQN hyperparameter search space (Used by base game NFSP)

GAE λ {0.9, 1.0}
entropy coeff {0.0, 0.001, 0.01, 0.1}
clip param {0.1, 0.2, 0.3}
KL target {0.001, 0.01, 0.1}
learning rate {5e-2, 5e-3, 5e-4, 5e-5, 5e-6}
train batch size {2048, 4096}
sgd minibatch size {128, 256, 512, 1024}
num sgd iters on train batch {1, 5, 10, 30, 60}

Table 9: Loss Game Continuous Action PPO hyperparameter search space (Used by NXDO BRs,
PSRO BRs)

G Costs and Benefits of Extensive-Form Restricted Games

(a) (b) (c)

Figure 8: NXDO exploitability in 20-Clone Leduc (a) and approximate exploitability in the Loss
Game (b and c) as a function of Double Oracle iterations in NXDO and PSRO.

Shown in figure 8, we compare the exploitability of NXDO against that of PSRO in terms of Double
Oracle iterations. NXDO acheives a low exploitability in significantly less iterations due to mixing
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population strategies at every infostate in the game rather than just the at root like is done in PSRO.
When both are limited to a small population of behavioral strategies, the extensive-form restricted
game allows for much more expressive power in solving for a meta-NE than a normal-form restricted
game does.

(a) (b) (c)

Figure 9: (a and b) In NXDO tests on the Loss Game, the cumulative amount of experience in episodes
to either train BRs or calculate meta-NE with NFSP as a function of Double Oracle iterations. After
the warm start phase, each NXDO iteration, we multiply the amount of episodes we spend training
NFSP by a coefficient of 1.5. (c) NXDO ablations on the 16-Dimensional Loss Game. We vary the
number of warm start iterations in which we spend zero time training the NFSP meta-NE solver and
the coefficient by which we multiply the episodes spent training NFSP each iteration after the warm
start.

This additional expressive power in the restricted game does come at an increased computational cost
which needs to be taken into account. NXDO is most applicable when the need to mix population
strategies at many infostates outweighs the extra computation needed to compute the extensive-form
restricted game. Figures 9a and 9b show the cumulative episodes spent training either BRs or meta-
NE vs NXDO iterations. The time spent training a meta-NE is gradually increased each iteration to
trade quickly adding BRs for solving the meta-NE at a high accuracy.

H Neural Methods on Kuhn and Leduc Poker

(a) (b)

Figure 10: NXDO, NXDO-VA, PSRO, and NFSP exploitability vs episodes collected on Kuhn and
Leduc Poker

We test NXDO, NXDO-VA, PSRO, and NFSP on Kuhn and Leduc Poker using the same hyperpa-
rameters as used with 20-Clone Leduc. In these smaller games, NXDO performs less competitively
because the time spent computing the extensive-form meta-NE strategies is large compared to the
amount of time needed to train nearly all pure strategies for Kuhn and Leduc. NFSP also reaches an
initial low exploitability quickly in part due to the small action-space sizes relative to other games
tested.

I Additional Loss Game Experiments

We analyze the effect of different stopping condition schedules for the NFSP meta-NE solver when
training NXDO on the 16-Dimensional Loss Game. In figure 9c we compare a variaty of warm
start amounts (the number of initial iterations in which zero time is spent training the meta-NE) and
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the coefficient at which we increase the number of episodes spent training any meta-NE thereafter.
The default parameters are a warm start of 5 and a coefficient of 1.5, thus we spend 5 fixed NXDO
iterations with a randomly initialized meta-NE solution, then train our sixth iteration meta-NE for
the starting amount of 1e6 episodes, and then train each subsequent meta-NE for 1.5x the number of
episodes in the previous iteration. Ablations with other reasonable values considered show that the
fine details of such a schedule have only minor effects on performance in the Loss Game.

NXDO against PSRO 0.26 ˘ 0.06
NXDO against NFSP 1.28 ˘ 0.06
PSRO against NFSP 1.26 ˘ 0.08

Table 10: 2D Loss Game Round Robin Payoffs

NXDO against PSRO 4.43 ˘ 0.06
Table 11: 16D Loss Game Round Robin Payoffs

We also perform a round robin evaluation for the 2-Dimensional and 16-Dimensional Loss Game by
measuring empirical payoffs between each algorithm’s checkpoints after respectively 2e7 and 1e7
episodes of training. For a given matchup between two algorithms, we play 1000 games, swapping
sides every other game, for each pairing of either algorithm’s 3 seeds, resulting in 9000 games total.
The reward means and 95% confidence intervals are reported in tables 10 and 11. NXDO beats PSRO
and NFSP in our Loss Game evaluations.

J Empirical Analysis of XDO Restricted Game Sizes

(a) (b)

Figure 11: XDO exploitability compared to CFR`, SDO and MCCFR as a function of states visited
in (a) Leduc poker and (b) 2-Clone Leduc Poker.

XDO outperforms CFR` in games where Nash equilibria require mixing over a small fraction
of actions. For example, XDO performs similarly to CFR` in standard Leduc poker, but XDO
significantly outperforms CFR` in 2-Clone Leduc poker. XDO scales better in this transition because
a restricted game sufficient to achieve a low exploitability can be induced with only a portion of the
game’s actions. Such a restricted game is much smaller in terms of total game states and thus requires
less computation to solve. The number of states in 2-Clone Leduc poker is roughly 50 times that of
standard Leduc poker, but when moving from standard to 2-Clone Leduc poker, the number of states
in the XDO restricted game increases by a much smaller proportion.

(a) (b) (c)

Figure 12: The size, in states, of the restricted game induced by the BR population in XDO in various
games.

In our XDO experiments, the final size (in states) of the restricted game in Leduc Poker is roughly
85% of the size of the full game. The final size of the restricted game in 2-Clone Leduc Poker is only
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approximately 43% that of the full game, so XDO performs proportionally less computation to solve
the restricted game meta-NE than it would take to directly solve the full-game NE with all actions
considered. XDO also outperforms CFR in Oshi Zumo, where the final size of the restricted game is
only half that of the full game.

K Computational Costs

Experiments were performed a shared local computer with 128 CPU-cores, 2 RTX 3090 GPUs, and
256GB of RAM. Due to small network sizes, most neural experiments were performed without GPU
acceleration. Neural experiments on 20-Clone Poker and the Loss Game used 8 to 16 cores each and
took between 2 and 4 days to complete using 10 to 40GB of RAM. Tabular XDO experiments were
run for up to 1 day, using a single core each and between 1 to 10GB of RAM.

L Experiment Code

Code for tabular experiments can be found at https://github.com/indylab/tabular_xdo

Code for neural experiments can be found at https://github.com/indylab/nxdo
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