
CFR-DO: A Double Oracle Algorithm for Extensive-Form Games

Stephen McAleer1, John Lanier1, Pierre Baldi1, Roy Fox1

1University of California, Irvine Department of Computer Science
Correspondence to smcaleer@uci.edu

Abstract

Policy Space Response Oracles (PSRO) is a deep reinforce-
ment learning algorithm for two-player zero-sum games that
has empirically found approximate Nash equilibria in large
games. Although PSRO is guaranteed to converge to a Nash
equilibrium, it may take an exponential number of iterations
as the number of information states grows. We propose XDO,
a new extensive-form double oracle algorithm that is guaran-
teed to converge to an approximate Nash equilibrium linearly
in the number of infostates. Unlike PSRO, which mixes best
responses at the root of the game, XDO mixes best responses
at every infostate. We also introduce Neural XDO (NXDO),
where the best response is learned through deep RL. In tabu-
lar experiments on Leduc poker, we find that XDO achieves
an approximate Nash equilibrium in a number of iterations
1-2 orders of magnitude smaller than PSRO. In experiments
on a modified Leduc poker game, we show that tabular XDO
achieves over 11x lower exploitability than CFR and over 82x
lower exploitability than PSRO and XFP in the same amount
of time. We also show that NXDO beats PSRO and is com-
petitive with NFSP on a large no-limit poker game.

Introduction
Policy Space Response Oracles is a deep reinforcement
learning method that is based on game theory for finding
approximate Nash equilibria (NE) in large two-player zero-
sum games. Methods based on PSRO have recently achieved
state-of-the-art performance on large imperfect-information
two-player zero-sum games such as Starcraft (Vinyals et al.
2019) and Stratego (McAleer et al. 2020). Despite the em-
pirical success of PSRO, in the worst case, PSRO may need
to expand all pure strategies in the normal form of the game,
which grows exponentially in the number of infostates. The
reason for this is that PSRO is based on the Double Oracle
algorithm for normal-form games (McMahan, Gordon, and
Blum 2003), and a mixture of normal-form pure strategies is
an inefficient representation of extensive-form policies.

In this work, we propose a new double oracle algorithm,
XDO, that is designed for extensive-form games. XDO
keeps a population of pure strategies. At every iteration,
XDO creates a restricted game by only considering actions
that are chosen by at least one strategy in the population.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This restricted game is then approximately solved via an ex-
tensive form game solver such as CFR or FP to find a meta-
NE, which is extended to the full game by taking arbitrary
actions at infostates not encountered in the restricted game.
Next, a BR to the restricted game meta-NE is computed via
an oracle, and added to the population. XDO can be viewed
as a version of PSRO where, instead of solving a restricted
game by only mixing population strategies at the root of the
game, the algorithm solves the restricted game by mixing
population strategies at every infostate.

XDO is guaranteed to converge to an approximate NE in a
number of iterations that is linear in the number of infostates,
while PSRO may require a number of iterations exponential
in the number of infostates. Furthermore, on a worst-case
family of games for PSRO, we show that XDO converges in
a number of iterations that does not grow with the number
of infostates, and grows only linearly with the number of
actions at each infostate.

We also introduce a neural version of XDO, called Neural
XDO (NXDO). NXDO can be used in games that are large
enough to benefit from the generalization over infostates in-
duced by neural-network strategies. NXDO learns an ap-
proximate BR through any deep reinforcement learning al-
gorithm. The restricted game is then defined as a meta-game
with each meta-action selecting a population policy to play
the next action. This restricted game is then solved through
any neural extensive-form game solver, such as NFSP or
Deep CFR. In our experiments, we use DQN for the approx-
imate BR and NFSP as the restricted game solver.

We conjecture that XDO outperforms PSRO in games
where the NE must mix over actions at many infostates. We
also conjecture that XDO outperforms CFR in games where
the NE only mixes over a small number of actions at each in-
fostate. To demonstrate the effectiveness of our approach on
these types of games we run experiments on two games. The
first, m-Clone Leduc, is similar to Leduc poker but with ev-
ery call, fold, and bet action duplicatedm times. The second
game is a small no-limit poker game with unabstracted inte-
ger bet sizes from 0 to 12. We show that tabular XDO greatly
outperforms PSRO, CFR, and XFP on m-Clone Leduc. We
also show that NXDO outperforms both PSRO and NFSP
on m-Clone Leduc, and beats PSRO by a larger margin than
NSFP does in the no-limit poker game.

To summarize, our contributions are as follows:

• We present a tabular extensive form double oracle algo-
rithm, XDO, that terminates in a linear number of itera-
tions in the number of infostates.

• We present a neural version of XDO, NXDO, that out-
performs PSRO and NFSP on a modified Leduc poker
game and beats PSRO while tying with NFSP on a no-
limit poker game.

Background
Extensive-Form Games
In this section, we use the same notation as in DREAM
(Steinberger, Lerer, and Brown 2020). An extensive-form
game progresses through a sequence of player actions, and
has a world state w ∈ W at each step. In an N -player
game, A = A1 × · · · × AN is the space of joint ac-
tions for the players. Ai(w) denotes the set of legal ac-
tions for player i ∈ N = {1, . . . , N} at world state w
and a = (a1, . . . , aN) ∈ A denotes a joint action. At each
world state, after the players choose a joint action, a tran-
sition function T (w, a) ∈ ∆W determines the probability
distribution of the next world state w′. Upon transition from
world state w to w′ via joint action a, player i makes an ob-
servation oi = Oi(w, a,w′). In each world state w, player i
receives a rewardRi(w).

A history is a sequence of actions and world states, de-
noted h = (w0, a0, w1, a1, . . . , wt), where w0 is the known
initial world state of the game. Ri(h) and Ai(h) are, re-
spectively, the reward and set of legal actions for player i in
the last world state of a history h. An infostate (informa-
tion set) for player i, denoted by si, is a sequence of that
player’s observations and actions up until that time point
si(h) = (a0

i , o
1
i , a

1
i , . . . , o

t
i). Define the set of all infostates

for player i to be Ii. The set of histories that correspond to
an infostate si is denoted H(si) = {h : si(h) = si}, and it
is assumed that they all share the same set of legal actions
Ai(si(h)) = Ai(h).

A player’s policy πi ∈ (∆Ai)Ii is a function mapping
from an infostate to a probability distribution over actions.
A policy profile π is a tuple (π1, . . . , πN). All players other
than i are denoted −i, and their policies are jointly denoted
π−i. A policy for a history h is denoted πi(h) = πi(si(h))
and π(h) is the corresponding policy profile. We also define
the transition function T (h, ai, π−i) as a function drawing
actions for −i from π−i to form a = (ai, a−i) and to then
sample the next world state w′ from T (w, a), where w is the
last world state in h.

The expected value (EV) vπi (h) for player i is the ex-
pected sum of future rewards for player i in history h, when
all players play policy profile π. The EV for an infostate si
is denoted vπi (si) and the EV for the entire game is denoted
vi(π). A two-player zero-sum game has v1(π)+v2(π) = 0
for all policy profiles π. The EV for an action in an infostate
is denoted vπi (si, ai). A Nash equilibrium (NE) is a pol-
icy profile such that, if all players played their NE policy, no
player could achieve higher EV by deviating from it. For-
mally, π∗ is a NE if vi(π∗) = maxπi

vi(πi, π
∗
−i) for each

player i.

The exploitability e(π) of a policy profile π is de-
fined as e(π) =

∑
i∈N maxπ′

i
vi(π

′
i, π−i). A best re-

sponse (BR) policy BRi(π−i) for player i to a policy
π−i is a policy that maximally exploits π−i: BRi(π−i) =
arg maxπi

vi(πi, π−i). An ε-best response (ε-BR) policy
BRεi(π−i) for player i to a policy π−i is a policy that
is at most ε worse for player i than the best response:
vi(BR

ε
i(π−i), π−i) ≥ vi(BRi(π−i), π−i) − ε. An ε-Nash

equilibrium (ε-NE) is a policy profile π in which, for each
player i, πi is an ε-BR to π−i.

A normal-form game is a single-step extensive-form
game. An extensive-form game induces a normal-form game
in which the legal actions for player i are its deterministic
policies si∈IiAi(si). These deterministic policies are called
pure strategies of the normal-form game. Since each deter-
ministic policy specifies one action at every infostate, there
are an exponential number of pure strategies in the num-
ber of infostates. A mixed strategy is a distribution over a
player’s pure strategies. Two policies π1

i and π2
i for player i

are said to be realization-equivalent if for any fixed strat-
egy profile of the other player, both π1

i and π2
i , define the

same probability distribution over the states of the game.

Theorem 1 (Kuhn’s Theorem (Kuhn and Tucker 1953)).
Any mixed strategy in the normal form of a game is real-
ization equivalent to a policy in the extensive form of that
game, and vice versa.

Related Work
There has been much recent work on non-game-theoretic
multi-agent RL (Foerster et al. 2018; Lowe et al. 2017;
Rashid et al. 2018; Bansal et al. 2017). Most of this work
focuses on games with more than two players such as multi-
agent cooperative games or mixed competitive-cooperative
scenarios. In cooperative environments, self-play has empir-
ically been shown to find an approximate NE (Lowe et al.
2017; Majumdar et al. 2020), but can be brittle when cooper-
ating with agents it hasn’t trained with (Lanctot et al. 2017).
Self-play reinforcement learning has achieved expert level
performance on video games (Vinyals et al. 2019; Berner
et al. 2019; Jaderberg et al. 2019), but is not guaranteed to
converge to an approximate NE.

Extensive-form fictitious play (XFP) (Heinrich, Lanctot,
and Silver 2015) and counterfactual regret minimization
(CFR) (Zinkevich et al. 2008) extend fictitious play and re-
gret matching, respectively, to extensive-form games. Deep
CFR (Brown et al. 2019) is a general method that trains a
neural network on a buffer of counterfactual values. How-
ever, Deep CFR uses external sampling, which may be im-
practical for games with a large branching factor such as
Stratego and Barrage Stratego. DREAM (Steinberger, Lerer,
and Brown 2020) and ARMAC (Gruslys et al. 2020) are
model-free regret-based deep learning approaches.

Our work is also related to pruning approaches (Brown
and Sandholm 2015; Brown, Kroer, and Sandholm 2017).
These methods start with all actions and sequentially re-
move actions that have low expected value. XDO instead
starts with no actions and sequentially adds actions.

Neural Fictitious Self Play (NFSP)
Neural Fictitious Self Play (NFSP) (Heinrich and Silver
2016) approximates XFP by progressively training a best
response against an average of all past policies using rein-
forcement learning. The average policy is represented by a
neural network and is trained via supervised learning using
a replay buffer of past best response actions. Each episode,
both players either play from their best response policy with
probability η = 0.1 or with their average policy with prob-
ability 1 − η. This experience is then added to the best re-
sponse circular replay buffer and is used to train the best
response for both players with off-policy DQN. If a player
plays with their best response policy, the data is also added
to the average policy reservoir replay buffer and is used to
train the average policy via supervised learning.

Policy Space Response Oracles (PSRO)
The Double Oracle algorithm (McMahan, Gordon, and
Blum 2003) is an algorithm for finding a NE in normal-
form games. The algorithm works by keeping a population
of policies Πt at time t. Each iteration a NE π∗,t is com-
puted for the game restricted to policies in Πt. Then, a best
response to this NE for each player BRi(π

∗,t
−i) is computed

and added to the population Πt+1
i = Πt

i ∪ {BRi(π
∗,t
−i)} for

i ∈ {1, 2}.
Policy Space Response Oracles (PSRO) (Lanctot et al.

2017) approximates the Double Oracle algorithm. The meta
NE is computed on the empirical game matrix UΠ, given
by having each policy in the population Π play each other
policy and tracking average utility in a payoff matrix. In
each iteration, an approximate best response to the current
meta NE over the policies is computed via any reinforce-
ment learning algorithm. Pipeline PSRO parallelizes PSRO
with convergence guarantees (McAleer et al. 2020).

A primary issue with PSRO is that it is based on a
normal-form algorithm, and the number of pure strategies
in a normal-form representation of an extensive-form game
is exponential in the number of information sets. Our ap-
proach implements the double oracle algorithm directly in
the extensive-form game, overcoming this problem and ter-
minating in a linear number of iterations in the number of
infostates.

Close to our work, (Bosansky et al. 2014) develop a se-
quence form double oracle algorithm for extensive-form
games that terminates in a linear number of iterations in the
number of infostates. Because this method works directly on
the sequence form, however, it is not clear how to extend this
method to large games with neural networks.

Extensive-Form Double Oracle (XDO)
We propose Extensive-Form Double Oracle (XDO), a
double-oracle algorithm designed for two-player zero-sum
extensive-form games. XDO maintains a population of pure
strategies, and in each iteration computes a meta-Nash Equi-
librium (meta-NE) of this population. Then the algorithm
finds a best response (BR) to the meta-NE and adds it to the
population.

In XDO, the population induces a different restricted
game, and therefore a different population meta-NE, than in
PSRO. In PSRO, a restricted normal-form game is induced
by playing off each pair of population strategies. In XDO, a
restricted extensive-form game is induced where the allowed
actions in each node are only those suggested by any strategy
in the population. This allows the mixed-strategy meta-NE
in XDO to assign different weights to the population strate-
gies at every infostate.

XDO uses a tabular method such as CFR to solve the re-
stricted game. The algorithm terminates after an iteration in
which the neither of the players finds a BR that outperforms
the meta-NE. When this happens, the meta-NE policies are
BRs to each other in the original game as well, and the meta-
NE is therefore the NE of the original game.

Interestingly, at each but the final iteration of XDO at least
one player adds some new action at some non-terminal in-
fostate, because a BR cannot outperform the meta-NE with
only restricted game actions. When player i adds action ai in
infostate si, this adds to the restricted game previously ex-
cluded infostates of the form (si, ai, oi). The number of it-
erations that XDO takes to terminate is therefore at most the
number of infostates. In contrast, the best known guarantee
for the number of iterations that PSRO takes to terminate is
exponential in the number of infostates, because PSRO may
need to add all pure strategies to the population. Moreover,
computing the meta-NE in PSRO may become intractable in
later iterations as the population size increases.

Algorithm 1: CFR-DO
Result: Approximate Nash Equilibrium
Input: initial population Π0

while Not terminated do
Define restricted game via (3);
Get ε-Nash policy πr of restricted game via CFR;
Find BRi(πr−i) for i ∈ {1, 2} via oracle;
Πt+1
i = Πt

i ∪BRi(πr−i) for i ∈ {1, 2};
if No new actions are added then

Terminate
end

end

Formally, XDO keeps a population of pure strategies Πt

at time t. Each iteration, a restricted extensive-form game is
created and a NE to the restricted game is computed. The
restricted game is created by taking the original game and
restricting the actions at every infostate si to be only the
actions where there exists a policy in the population Πt that
chooses that action at that infostate:
Ari (si) = {a ∈ Ai(si) : ∃πi ∈ Πt s.t. πi(si, a) = 1} (1)
Then, an ε-NE policy πr∗ is computed in this restricted

game via a tabular method such as CFR and is extended
to the full game by defining arbitrary actions on infostates
not encountered in the restricted game. Next, BRs to this re-
stricted game meta-NE BR1(πr∗2) and BR2(πr∗1) are com-
puted via an oracle. These BRs are then added to the popu-
lation of policies: Πt+1

i = Πt
i ∪ BRi(πr∗−i) for i ∈ {1, 2}.

Figure 1: Three iterations of XDO (left to right). In these extensive-form game diagrams, player 1 (P1) plays at the root, then
P2 plays without knowing P1’s action, and if both played Left P1 plays another action. Actions in the restricted game are solid,
vs. dashed outside the restricted game. Meta-NE actions are blue, vs. black not in the meta-NE. BR actions are thick, vs. thin
for non-BR actions.

The algorithm terminates when neither player benefits more
than ε from deviating from the meta-NE to the BR, indicat-
ing that the meta-NE is an ε-NE also in the original game.
To speed up XDO, we start the algorithm with high value
of the ε parameter that controls the meta-NE approximation
quality, and decrease ε by half every time the exploitability
of the meta-NE in the original game is less than the current
ε.

To illustrate how XDO works, we demonstrate a simple
game in Figure 1. The game starts with empty populations
and arbitrary actions (always Left) in every infostate. At the
first iteration (left diagram), player 1 adds a BR that plays
Left at the first infostate (the root) and Right at the second
one. Player2 simultaneously adds a BR that plays Right at
their single infostate. The restricted game now consists of
only these added actions. At the second iteration (middle
diagram), player 1 adds a BR that plays Right at both in-
fostates, and player 2’s BR still plays Right. The restricted
game now includes both actions for the root infostate, but
only Right is in the meta-NE. Next, in the third iteration
(right diagram), player 1 keeps the same BR, while player
2’s BR plays Left. In the meta-NE of this final restricted
game, player 1 plays Left and Right with equal probability
at the first infostate, and player 2 plays Left with probability
0.37 and Right with probability 0.63. Since the BRs to this
meta-NE do not add any new actions, XDO terminates, and
the meta-NE is the NE for the full game. Note that in this
example, most actions are needed to find a NE. In games
like this, it would be faster to simply solve the original game
from the beginning. However, certain games such as the ones
in our experiments have Nash equilibria that only need to
mix over a small subset of actions, in which case XDO will
be much faster than solving the original game.

Proposition 1. In XDO with an ε1-BR oracle, let πr∗ be the
final ε2-NE in the restricted game. Then πr∗ is an (ε1 + ε2)-
NE in the full game.

Proof. For each i ∈ {1, 2}, let BRε1i (πr∗−i) be player i’s ε1-
BR to πr∗−i obtained in the last iteration. By the termination
condition vi(πr∗) ≥ vi(BRε1i (πr∗−i), π

r∗
−i)− ε2

≥ maxπ′
i
vi(π

′
i, π

r∗
−i) − ε1 − ε2, where the last inequality

Figure 2: A 2-GMP game with n = 3 actions. The chance
node selects uniformly at random which GMP game both
players play. Both players know what stage game they are
playing.

follows from BRε1i (πr∗−i) being an ε1-best response to πr∗−i.

The next two propositions show an exponential gap in
the known guarantees for the number of iterations in which
PSRO and XDO terminate. If each infostate allows A dif-
ferent actions, PSRO is guaranteed to terminate in

∑
iA
|Ii|

iterations, while XDO is guaranteed to terminate in
∑
i |Ii|

iterations.
Proposition 2. PSRO terminates in

∑
i

∏
si∈Ii Ai(si) iter-

ations.

Proof. In each iteration of PSRO, at least one player adds a
new normal-form pure strategy to the population. The space
of pure strategies for player i has size

∏
si∈Ii Ai(si), be-

cause each normal-form pure strategy specifies an action at
each infostate for that player.

Proposition 3. XDO terminates in
∑
i |Ii| iterations.

Proof. Consider an infostate s′i = (a0
i , o

1
i , . . . , a

t
i, o

t+1
i)

for player i as covered in the restricted game if any of
player i’s population policies chooses action ati in infostate
si = (a0

i , o
1
i , . . . , a

t−1
i , oti). At each but the final iteration,

at least one player i has vi(BRi(πr∗−i), π
r∗
−i) > vi(π

r∗) + ε.
Since πr∗i is an ε-BR to πr∗−i in the restricted game, the BR
BRi(π

r∗
−i) must be choosing at least some action ai at some

non-terminal infostate si that was not previously chosen by
any population policy. Adding this action to the restricted
game covers at least one previously uncovered infostate: all
infostates s′i = (si, ai, oi), for any observation oi. All infos-
tates will therefore be covered in at most

∑
i |Ii| iterations,

at which point the next iteration must terminate.

Tightness of the guarantees. The guarantees in Proposi-
tion 2 and Proposition 3 are tight in the sense that they are
achieved in some games, but more nuanced analysis is re-
quired to identify easier cases where these bounds overes-
timate the complexity of the algorithms. Both PSRO and
XDO often outperform these guarantees and terminate in
fewer iterations. A case in which PSRO expands all pure
normal-form strategies of an extensive-form game is de-
scribed in the supplementary materials.

XDO can add multiple actions in each iteration. In
practice, XDO often outperforms the guarantee of Proposi-
tion 3 because it adds multiple actions in each iteration. Here
we present and analyze a family of games in which XDO ter-
minates in asymptotically fewer iterations than suggested by
the bound in Proposition 3.

In a generalized matching pennies (GMP) game, both
players simultaneously choose one of n actions. The pay-
off to player 1 is n−1 if the actions match, or−1 if they are
different. In a k-GMP game (Figure 2), a chance node first
selects an index j between 1 and k, and then the players play
the j’th of k identical GMP games. The following proposi-
tion provides a tighter performance bound for XDO in this
case, 2n iterations instead of

∑
i |Ii| = 2k(n+ 1) (there are

kn terminal infostates for each player).

Proposition 4. In k-GMP with n actions, XDO terminates
in 2n iterations.

Proof. In a given iteration, consider the restricted game for a
single GMP game. If player 2 is allowed an action that player
1 is not, such an action will be player 2’s NE, and player 1’s
BR will add that action. If player 2 is not allowed an action
unavailable to player 1, player 2’s BR will be a new action
unavailable to player 1, if one exists. Thus at least one of
the players add a new action in every GMP game in parallel,
until both players add all actions.

Size of the restricted game. The number of iterations in
each algorithm does not provide the full picture of their per-
formance, since iterations can require vastly different com-
putation times. Intuitively, the restricted game in XDO is
much larger than in PSRO when both algorithms have the
same population size, because XDO induces an extensive-
form restricted game with all discovered actions, while
PSRO induces a normal-form restricted game with pop-
ulation policies as actions. However, as both algorithms
progress, the XDO restricted game is bounded in size by the
original game, while PSRO can induce a game with expo-
nentially many actions.

XDO for sparse-support policies. XDO is useful when
the policies in the population do not cover the full original
game, because when they do then finding the restricted game
meta-NE is as hard as solving the original game. The moti-
vation behind XDO is that, in games where the NE policies
are supported by few actions in most infostates, XDO has the
potential to quickly find these actions and terminate without
expanding the full game.

To analyze this behavior, consider the m-clone GMP
game, in which there are mn actions partitioned into n
equal classes. The actions of the two players are consid-
ered a match (with payoff n − 1 to player 1) if they belong
to the same class. In (k,m)-clone GMP, a chance node se-
lects among k identicalm-clone GMP games. The following
proposition shows that in (k,m)-clone GMP with n classes,
XDO terminates after adding at most 2n actions for each
player, instead of the full game of kmn actions.

Proposition 5. In (k,m)-clone GMP with n classes, XDO
adds at most 2n actions for each player.

Proof. The proof repeats that of Proposition 4, but consid-
ering classes instead of actions, because it does not matter
which member of a class is added. Once at least one mem-
ber of each class is added to the restricted game, the meta-
NE has full-game exploitability 0, and XDO terminates. In
iterations where a BR for a player does not add a new class,
it may add a new action member of an existing class. In total,
2n actions may be added for each player.

PSRO lower bound. Similarly to XDO, PSRO can also
outperform the guarantee of Proposition 2 in certain cases.
Generically, however, the linear upper bound on XDO es-
tablished by Proposition 3,

∑
i |Ii|, is also a lower bound

on the normal-form population size of pure strategies that
is needed to support a NE in PSRO. To show this, consider
the perturbed k-GMP game, in which the payoffs in each
GMP game are slightly modified to induce k distinct NE.
The following proposition establishes a linear lower bound
for PSRO in perturbed k-GMP games.

Proposition 6. There exist perturbed k-GMP games with
n actions, in which PSRO cannot terminate in fewer than
k(n− 1) + 1 iterations.

Proof. The proof is contained in the supplementary materi-
als.

Neural Extensive-Form Double Oracle
(NXDO)

Neural Extensive-Form Double Oracle (NXDO) extends
XDO to large games through deep reinforcement learning
(DRL). Instead of using an oracle best response, NXDO
instead uses approximate best responses that are trained
via any deep reinforcement learning algorithm such as
DQN (Mnih et al. 2015) or PPO (Schulman et al. 2017).
Instead of representing the restricted game explicitly as the
set of allowed actions in every infostate, NXDO delegates
these actions to population policies. A meta-policy in the re-
stricted game selects, in each infostate, the population policy

Figure 3

Figure 4

that will be invoked to sample an action. That action is then
applied to the original game to get the next state.

Formally, NXDO keeps a population of DRL policies Πt

at time t. Each iteration, a restricted extensive-form game is
created and a NE to the restricted game is computed. The
restricted game is created by having meta-actions at every
infostate that pick one policy from the population.

∀si ∈ Ii Ari (si) = {1, 2, ..., |Πt
i|} (2)

The world states, observations, and histories remain the
same as the original game. After each player selects a meta-
action that indicates a population policy, an action is sam-
pled from that population policy and used for the world state
transition. The transition function in the restricted game sat-
isfies

T r(h, ar, w′) =
∑
a

∏
i

π
ari
i (si(h), ai)T (h, a, w′), (3)

where π1
i , . . . , π

|Πi|
i are the population policies for player i.

With the restricted game thus defined, an ε-NE πr∗ is
computed in this restricted game via a DRL method for
finding NE, such as NFSP or DREAM. Approximate BRs
BR1(πr∗2) andBR2(πr∗1) to this meta-NE are computed via
a DRL algorithm such as DQN or PPO. These BRs are then
added to the population of policies: Πt+1

i = Πt
i ∪BRi(πr∗−i)

for i ∈ {1, 2}. Provided that the DRL best responses are
sufficiently close to oracle best responses and the inner-
loop solver finds a sufficiently close approximate NE of

Figure 5

Figure 6

the restricted game, NXDO inherits the same convergence
properties as XDO. Of course, in practice, contemporary
DRL methods lack any guarantee of providing approximate
NE or BRs. Nevertheless, we show experimentally that ap-
proximate exploitability can decrease through execution of
NXDO faster than it does for PSRO and NFSP.

A drawback of meta-actions that delegate actions to pop-
ulation policies is that the number of meta-actions grows
linearly with the number of iterations. This can eventually
make the restricted game harder to solve than the original
game. In our experiments, however, NXDO achieves sig-
nificant improvements in exploitability within a very small
number of iterations, such that the issue of action delegation
does not becomes an obstacle.

In games where it is tractable, we consider a variant,
NXDO-VA, where the restricted game is explicitly calcu-
lated and defined with valid and invalid original-game ac-
tions in the same way as with Tabular XDO, using equation
restrictedgame.

Results
For the tabular experiments, we use XDO with an oracle
best response (BR) and CFR for the inner-loop meta-NE
solver. We compare XDO with PSRO and XFP, which use
oracle BRs as well. We also compare with CFR, and for both
CFR and XFP we follow the implementations in OpenSpiel
(Lanctot et al. 2019). Since CFR, XDO, and XFP are deter-
ministic, we do not plot error bars for these algorithms. For

Figure 7

Figure 8

the neural experiments, we use NXDO with a DQN BR and
NFSP as the meta-NE solver. DQN-PSRO uses a DQN BR
and FP as the meta-NE solver. We compare these algorithms
on m-Clone Leduc poker and no-limit poker, described be-
low.

m-Clone Leduc poker: m-Clone Leduc poker is similar
to Leduc poker but with every action duplicated m times,
such that instead of a single call, fold, and bet action there
are m identical call, fold, and bet actions. As the num-
ber of cloned actions increases, we expect the performance
of methods based on CFR and FP such as DREAM and
NFSP to deteriorate, while the performance of XDO remains
largely unchanged because it ignores the extra actions.

No-limit poker: We consider a simple no-limit poker
game, in which each player is dealt one card from a deck
consisting of two suits and three ranks. Then two rounds of
betting take place, one pre-flop and one post-flop. During the
flop, the dealer deals one public card face up. During each
betting round, players can choose to bet an integer amount of
chips. Players start out with a stack of 10 chips. The winner
of the hand is the player with the highest pair, or the highest
ranking card if neither player has a pair.

Comparing Tabular XDO and Oracle PSRO with a
fixed population
In extensive-form games, only mixing at the root of the
game as done in PSRO can be very inefficient. To demon-
strate this, we randomly sample a population of pure strate-
gies and then computed a normal-form meta-NE as in PSRO
and an extensive-form meta-NE as in XDO. We randomly
sample ten populations of pure strategies of sizes 2, 3, 5,
10, 20, 100, 300, and 1000. After calculating the normal-
form and extensive-form meta-NE for a population, we mea-
sure its exploitability. In Figure 3 we plot the average fi-
nal exploitability of both methods for each of the popula-
tion sizes. The shaded region represents 95% confidence
intervals. Even after 1000 random pure strategies, we find
that calculating a normal-form meta-NE as in PSRO is still
very exploitable. In contrast, the extensive-form meta-NE
achieves low exploitability with only 20 random policies.

Comparing Tabular XDO and Oracle PSRO on
Leduc poker
As demonstrated by the previous result, finding a normal-
form meta-NE can be much less efficient and more ex-
ploitable than finding an extensive-form meta-NE. This
means that PSRO will usually require many more pure
strategies to achieve a similar level of exploitability to XDO.
Figure 4 summarizes the results of running XDO and PSRO
with an oracle BR. Even after 200 iterations, PSRO remains
significantly more exploitable than XDO is at 20 iterations.
XDO achieves exploitability of 0.1 in over 20x fewer iter-
ations than PSRO. In large games where calculating many
approximate BRs via reinforcement learning is expensive,
requiring vastly more iterations can render PSRO infeasible.

Comparing XDO and CFR in 2-Clone Leduc poker
by infostates expanded
We compare XDO with CFR in 2-Clone Leduc poker. In
Figure 8, we plot the exploitability of these two algorithms
as a function of the number of infostates expanded by the
algorithm. Since XFP and PSRO only use oracles, we do not
include them in this analysis. Since CFR updates every in-
fostate every iteration, as we increase the number of cloned
actions, the performance of CFR will deteriorate. In contrast,
XDO will tend to not add cloned actions, which allows the
inner-loop CFR to expand fewer infostates. These results for
XDO are with an oracle best response that always chooses
the first available best response. We found that if XDO ran-
domly chose a best response instead, then XDO would still
outperform CFR, but not by as much.

Comparing XDO with CFR, PSRO, and XFP in
2-Clone Leduc poker by wall time
We compare XDO with CFR, PSRO, and XFP in 2-Clone
Leduc poker by wall time. While not a perfect comparison
because each algorithm uses oracles to different extents, it
allows us to compare all four algorithms by the same metric.
As shown in Figure 6, XDO vastly outperforms the other
three methods. Tabular XDO achieves exploitability over

11x lower than CFR and over 82x lower than PSRO and XFP
in the same amount of time.

Neural Experiments on 40-Clone Leduc poker
We compare NXDO with NFSP and PSRO on 40-Clone
Leduc poker. Similar to the tabular experiments, we find
that XDO outperforms both methods. However, we find that
the margin by which XDO outperforms these methods is
smaller than in tabular experiments. We conjecture that the
restricted game induced by XDO is already large enough for
the inner-loop NFSP meta-NE solver to struggle. As more
adequate NE solvers are developed, in particular CFR-based
algorithms, we expect XDO to be able to leverage them as
meta-NE solvers to achieve better performance.

Neural Experiments on no limit poker

Table 1: Average Reward

XDO PSRO NFSP
XDO - 0.615 -0.183
PSRO -0.615 - -0.462
NFSP 0.183 0.462 -

Table 2: Average Win Rate

XDO PSRO NFSP
XDO - 0.512 0.598
PSRO 0.488 - 0.583
NFSP 0.402 0.417 -

Discussion
In this paper, we propose a XDO, a double oracle algorithm
that operates directly on the extensive-form of a two-player
zero-sum game. XDO mixes among pure strategy best re-
sponses at every infostate instead of only at the root of the
game as in PSRO. Because of this, only a number of pure
best responses that is linear in the number of infostates is
needed to find a NE. In contrast, the lowest known upper
bound on the number of iterations needed in PSRO is expo-
nential in the number of infostates. To find a meta-NE when
mixing at every infostate, tabular XDO runs a tabular algo-
rithm such as CFR on the restricted game defined by only al-
lowing actions that at least one BR in the population chooses
at that infostate. We also introduce NXDO, which uses DRL
to find approximate BRs and to solve the restricted game.

Our experimental results suggest that XDO significantly
outperforms CFR, PSRO, and XFP on 2-Clone Leduc poker
and that XDO can find significantly less exploitable meta-
NE strategies than PSRO. Other experiments indicate that
NXDO significantly outperforms PSRO and NFSP on 40-
Clone Leduc poker and outperforms PSRO on a small no-
limit poker game.

We conjecture that XDO and NXDO perform well in
games where the NE must mix over many infostates, but
only a small fraction of all actions are in the support of the
NE at each infostate. In such games, we expect XDO and
NXDO to outperform PSRO, because PSRO may require a
superlinear, or even exponential number of pure strategies.
We also expect XDO and NXDO to outperform CFR and
NFSP, respectively, on games where the NE only needs to
mix over a small number of actions. This is because CFR
and NFSP scale poorly with the number of actions in the
game, but XDO and NXDO tend to discover a set of rele-
vant actions and to not consider actions that are dominated
or redundant. We hypothesize that games having this prop-
erty are prevalent across a number of domains such as large
board games and video games and in robotics applications.
We also think that XDO and NXDO might be a promising
approach toward solving large continuous-action games.

References
Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2017. Emergent complexity via multi-agent com-
petition. arXiv preprint arXiv:1710.03748 .

Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak, P.;
Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.;
et al. 2019. Dota 2 with Large Scale Deep Reinforcement
Learning. arXiv preprint arXiv:1912.06680 .

Bosansky, B.; Kiekintveld, C.; Lisy, V.; and Pechoucek,
M. 2014. An exact double-oracle algorithm for zero-sum
extensive-form games with imperfect information. Journal
of Artificial Intelligence Research 51: 829–866.

Brown, N.; Kroer, C.; and Sandholm, T. 2017. Dynamic
thresholding and pruning for regret minimization. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 31.

Brown, N.; Lerer, A.; Gross, S.; and Sandholm, T. 2019.
Deep Counterfactual Regret Minimization. In International
Conference on Machine Learning, 793–802.

Brown, N.; and Sandholm, T. 2015. Regret-Based Pruning
in Extensive-Form Games. In NIPS, 1972–1980.

Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual multi-agent policy gra-
dients. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Gruslys, A.; Lanctot, M.; Munos, R.; Timbers, F.; Schmid,
M.; Perolat, J.; Morrill, D.; Zambaldi, V.; Lespiau, J.-B.;
Schultz, J.; et al. 2020. The Advantage Regret-Matching
Actor-Critic. arXiv preprint arXiv:2008.12234 .

Heinrich, J.; Lanctot, M.; and Silver, D. 2015. Fictitious
self-play in extensive-form games. In International Confer-
ence on Machine Learning, 805–813.

Heinrich, J.; and Silver, D. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121 .

Jaderberg, M.; Czarnecki, W. M.; Dunning, I.; Marris, L.;
Lever, G.; Castaneda, A. G.; Beattie, C.; Rabinowitz, N. C.;

Morcos, A. S.; Ruderman, A.; et al. 2019. Human-level per-
formance in 3D multiplayer games with population-based
reinforcement learning. Science 364(6443): 859–865.
Kuhn, H. W.; and Tucker, A. W. 1953. Contributions to the
Theory of Games, volume 2. Princeton University Press.
Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.;
Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls,
K.; Omidshafiei, S.; et al. 2019. OpenSpiel: A frame-
work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453 .
Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Pérolat, J.; Silver, D.; and Graepel, T. 2017. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing
Systems, 4190–4203.
Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Abbeel, O. P.;
and Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in neu-
ral information processing systems, 6379–6390.
Majumdar, S.; Khadka, S.; Miret, S.; Mcaleer, S.; and
Tumer, K. 2020. Evolutionary Reinforcement Learning for
Sample-Efficient Multiagent Coordination. In International
Conference on Machine Learning, 6651–6660. PMLR.
McAleer, S.; Lanier, J.; Fox, R.; and Baldi, P. 2020. Pipeline
PSRO: A Scalable Approach for Finding Approximate Nash
Equilibria in Large Games .
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the presence of cost functions controlled by an ad-
versary. In Proceedings of the 20th International Conference
on Machine Learning (ICML-03), 536–543.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fid-
jeland, A. K.; Ostrovski, G.; et al. 2015. Human-level con-
trol through deep reinforcement learning. nature 518(7540):
529–533.
Rashid, T.; Samvelyan, M.; De Witt, C. S.; Farquhar, G.;
Foerster, J.; and Whiteson, S. 2018. QMIX: Monotonic
value function factorisation for deep multi-agent reinforce-
ment learning. arXiv preprint arXiv:1803.11485 .
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 .
Steinberger, E.; Lerer, A.; and Brown, N. 2020. DREAM:
Deep Regret minimization with Advantage baselines and
Model-free learning. arXiv preprint arXiv:2006.10410 .
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature
575(7782): 350–354.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2008. Regret minimization in games with incomplete
information. In Advances in neural information processing
systems, 1729–1736.

