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Summary

Model-Based Reinforcement Learning (MBRL) has shown promise in visual control tasks
due to its data efficiency. However, training MBRL agents to develop generalizable perception
remains challenging, especially amid visual distractions that introduce noise in representation
learning. We introduce Segmentation Dreamer (SD), a framework that facilitates representa-
tion learning in MBRL by incorporating a novel auxiliary task. Assuming that task-relevant
components in images can be easily identified with prior knowledge in a given task, SD uses
segmentation masks on image observations to reconstruct only task-relevant regions, reducing
representation complexity. SD can leverage either ground-truth masks available in simula-
tion or potentially imperfect segmentation foundation models. The latter is further improved
by selectively applying the image reconstruction loss to mitigate misleading learning signals
from mask prediction errors. In modified DeepMind Control suite and Meta-World tasks with
added visual distractions, SD achieves significantly better sample efficiency and greater final
performance than prior work and is especially effective in sparse reward tasks that had been un-
solvable by prior work. We also validate its effectiveness in a real-world robotic lane-following
task when training with intentional distractions for zero-shot transfer.“

“Project page: https://indylab.github.io/SD

Contribution(s)

1. This paper introduces a novel auxiliary task in model-based reinforcement learning (MBRL)

to enhance representation learning in visually distracting environments. Our approach re-
constructs control-relevant components while filtering out distractions, ensuring that latent
embeddings focus on essential features.
Context: While our method requires prior knowledge of task-relevant components, iden-
tifying these components is typically straightforward for practitioners in many robotics ap-
plications. Prior work using reconstruction-free auxiliary tasks relies on large amounts of
data to infer important features, making them less sample-efficient.

2. This paper integrates segmentation foundation models to guide feature learning in visual
control through task-relevant reconstruction targets, without incurring extra test-time over-
head and while improving robustness to segmentation errors. This demonstrates an effective
way to harness advances in computer vision for visual control tasks.

Context: Prior approaches typically use segmentation models for input preprocessing,
which adds deployment overhead and increases sensitivity to segmentation errors.

3. Our method learns effective visual control policies in environments with distractions,
demonstrating success in DMC, where locomotion control requires handling contact dy-
namics; Meta-World, which involves robotic manipulation, occlusions, and multi-object
interactions; and DuckieTown, where transferring lane-following behavior from simulation
to reality must account for diverse perturbations, including foreground distractions.
Context: Our method is sample-efficient, achieves record final performance, and is the
only method capable of learning with sparse rewards in DMC.


https://indylab.github.io/SD

Task-Relevant Reconstruction for Visual Control with Distractions

Make the Pertinent Salient: Task-Relevant
Reconstruction for Visual Control with Distractions

Kyungmin Kim, JB Lanier, Roy Fox
{kyungk7, jblanier, royf}@uci.edu

Department of Computer Science, University of California, Irvine, USA

Abstract

Model-Based Reinforcement Learning (MBRL) has shown promise in visual control
tasks due to its data efficiency. However, training MBRL agents to develop generaliz-
able perception remains challenging, especially amid visual distractions that introduce
noise in representation learning. We introduce Segmentation Dreamer (SD), a frame-
work that facilitates representation learning in MBRL by incorporating a novel auxiliary
task. Assuming that task-relevant components in images can be easily identified with
prior knowledge in a given task, SD uses segmentation masks on image observations
to reconstruct only task-relevant regions, reducing representation complexity. SD can
leverage either ground-truth masks available in simulation or potentially imperfect seg-
mentation foundation models. The latter is further improved by selectively applying
the image reconstruction loss to mitigate misleading learning signals from mask pre-
diction errors. In modified DeepMind Control suite and Meta-World tasks with added
visual distractions, SD achieves significantly better sample efficiency and greater final
performance than prior work and is especially effective in sparse reward tasks that had
been unsolvable by prior work. We also validate its effectiveness in a real-world robotic
lane-following task when training with intentional distractions for zero-shot transfer.'

1 Introduction

Recent advances in model-based reinforcement learning (MBRL) (Sutton, 1991; Ha & Schmid-
huber, 2018; Hafner et al., 2019; 2020; Hansen et al., 2022; 2023) have made it a powerful tool
for learning control policies, achieving high sample efficiency. Among these advancements, the
DREAMER family (Hafner et al., 2020; 2021; 2023) stands out as seminal work, demonstrating
strong performance across diverse visual control environments. This success is driven by a close
cooperation between a world model and an actor—critic agent. The world model learns to emulate
the environment’s forward dynamics and reward function in a latent state space, and the agent is
trained by interacting with this world model in place of the original environment.

Under this framework, accurate reward prediction is all we should sufficiently require for agent
training. However, learning representations solely from reward signals is inherently challenging due
to their limited expressiveness and high variance (Hafner et al., 2020; Jaderberg et al., 2017). To
address this, DREAMER employs image reconstruction as an auxiliary task in world model training
to facilitate representation learning. In environments with little distraction, image reconstruction
proves effective by delivering rich feature-learning signals derived from pixels. However, in the
presence of distractions, the image reconstruction task pushes the encoder to retain all image infor-
mation, regardless of its task relevance. Including such information in the latent space complicates
dynamics modeling and degrades sample efficiency by wasting model capacity and drowning the
relevant signal in noise.

IProject page: https://indylab.github.io/SD
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Figure 1: Left: Providing mask example(s) and fine-tuning a mask model, or instrumenting a simula-
tor, to obtain masks. Right: An input observation in a distracting Meta-World with three alternative
auxiliary task targets. Moving scenes in the background are considered distractions. (b) Observa-
tions including task-irrelevant information, disturbing world-model training. (c) and (d) Segmenta-
tion of task-relevant components using, respectively, a ground-truth mask and an approximate mask
generated by segmentation models.

Distractions are prevalent in real-world visual control tasks. A robot operating in a cluttered envi-
ronment such as a warehouse may perceive much task-irrelevant information that it needs to ignore.
When training with domain randomization for added policy robustness, task-irrelevant informa-
tion is actively added and must be denoised. Prior approaches (Zhang et al., 2021; Nguyen et al.,
2021; Deng et al., 2022; Fu et al., 2021; Bharadhwaj et al., 2022) address the noisy reconstruction
problem by devising reconstruction-free auxiliary tasks, such as contrastive learning (Chen et al.,
2020). However, they often suffer from sample inefficiency, requiring many trajectories to isolate
the task-relevant information that needs to be encoded. This challenge is exacerbated in sparse-
reward environments, where the signal for task relevance is very weak. Additionally, working with
small objects, which is common in object manipulation tasks, poses difficulties for these methods
because those objects contribute less to loss functions and are easily overlooked without special
attention (Seo et al., 2022).

Inspired by these problems, we address the following question in this paper: How can we help world
models learn task-relevant representations more efficiently? Our proposed solution takes advantage
of the observation that identifying task-relevant components within images is often straightforward
with some domain knowledge. For instance, in a robotic manipulation task, the objects to manip-
ulate and the robot arm are such task-relevant components, as shown in Fig. 1 (Left). Given this
assumption, we introduce a simple yet effective alternative auxiliary task to reconstruct only the
task-related components of image observations.

We accomplish this by using segmentation masks of task-related objects which are easily accessible
in simulations. Specifically, we replace Dreamer’s auxiliary task to reconstruct raw RGB image ob-
servations (Fig. 1b) with an alternative task to reconstruct images with a task-relevant mask applied
to them (Fig. 1c). By doing this, the world model can learn features from a rich pixel-reconstruction
loss signal without being hindered by the noise of visual distractions. As long as task-relevance
can feasibly be encoded in segmentation-mask format, which is common in many object-centric
and robotics domains, our method can be used to improve the efficiency of world model training in
distracting environments.

Unlike previous work that incorporates segmentation masks as inputs in reinforcement learn-
ing (RL) (James et al., 2019; So et al., 2022; Zhang et al., 2025), we use masks solely in an auxiliary
task to improve representation learning. This approach offers two advantages. First, segmentation
masks are only required during training. Our method still operates on the original (potentially dis-
tracting) images, so masks are unnecessary at test time, improving deployment efficiency. Second,
the masks do not need to be perfect; as long as they guide feature learning to be informative for the
downstream task, approximate masks can replace ground-truth masks, enhancing practicality.

To this end, we propose training with our auxiliary task using segmentation estimates, enabling
learning in scenarios where no ground-truth (GT) masks are available. Building on recent advances
in segmentation foundation models (Kirillov et al., 2023; Zhang et al., 2023; Xie et al., 2021), we
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fine-tune these models with a small amount of annotated training data to generate pseudo-labels for
the auxiliary task (Fig. 1d). While the performance with segmentation estimates is strong without
further modification, we find that the training can sometimes be destabilized due to incorrect learning
signals from segmentation prediction errors. To enhance robustness, we identify pixels where the
foundation model’s mask prediction disagrees with a second mask prediction given by our world
model. We then exclude these pixels from the RGB reconstruction loss, preventing training on
potentially incorrect targets (Section 4.3).

We additionally demonstrate our method’s effectiveness in cases where ground-truth mask are avail-
able but only during training, such as when training in simulation for zero-shot deployment on a
real robot. In such cases, methods like domain randomization (Tobin et al., 2017) can be employed
during training to introduce visual distractions and promote test-time generalization to unseen real
environment appearances. Using ground-truth masks provided by the simulation, we show that de-
coding only task-relevant information dramatically improves the world model’s training efficiency
and generalization on a real-robot lane-following task.

We evaluate our method on various robotics benchmarks, including DeepMind Control Suite (Tassa
et al., 2018) and Meta-World (Yu et al., 2019), perturbing both with visual distractions. We show
that our method for reconstructing masked RGB targets using the ground-truth masks in the presence
of distractions can reach the same level of performance as training in the original environment with
no distractions added. Our method for training with approximate masks also shows impressive
performance, often matching the performance of the ground-truth mask variant. Notably, this is
accomplished with very few task-specific mask example data points (1, 5, or 10 used for fine-tuning),
with much of its strength coming from the power of segmentation foundation models. Furthermore,
our method proves particularly effective in sparse reward environments and those involving small
objects, where prior approaches often struggle.

Finally, in a robot lane-following task, we demonstrate our method’s effectiveness in simulation-
to-real training by decoding only task-relevant components of image observations, promoting more
efficient simulation training and better zero-shot generalization to the real world environment.

2 Related Work

Model-Based RL for Distracting Visual Environments. Recent advances in MBRL have en-
abled efficient learning from image observations (Finn & Levine, 2017; Ha & Schmidhuber, 2018;
Hafner et al., 2019; 2020; 2021; 2023; Schrittwieser et al., 2020; Hansen et al., 2022; 2023). How-
ever, learning robust perceptual representations in the presence of distractions remains challeng-
ing. Some approaches use non-reconstructive representation learning methods (Nguyen et al., 2021;
Deng et al., 2022), such as contrastive (Chen et al., 2020) and prototypical learning (Caron et al.,
2020). However, features learned with these methods do not necessarily involve task-related con-
tent since they do not explicitly consider task-relevance in feature learning. Other works introduce
auxiliary objectives to explicitly incorporate downstream task information, such as DBC (Zhang
et al., 2021), which uses a bisimulation metric (Ferns et al., 2011), and TIA (Fu et al., 2021), which
explicitly separates task-relevant and irrelevant branches to distinguish reward-correlated visual fea-
tures from distractions. More recent methods exploit inductive biases like predictability (Zhu et al.,
2023) and controllability (Wang et al., 2022; Bharadhwaj et al., 2022) but often require extensive
sampling to infer task-relevant content. Notably, solving sparse reward environments with distrac-
tions remains an open problem. In contrast, our work proposes to leverage domain knowledge via
image masks to directly guide task-relevant representation learning and improve sample efficiency
by reducing the complexity of learned representations. While model-free RL has explored robust
representation learning (Laskin et al., 2020; Kostrikov et al., 2021; Yarats et al., 2021; Hansen et al.,
2021; Hansen & Wang, 2021; Nair et al., 2022; Zhang et al., 2019), MBRL remains superior in
sample efficiency and performance for visual control, making it our primary focus for comparison.
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Segmentation for RL. Segmentation models (He et al., 2017; Redmon et al., 2016) have been
widely used across many downstream tasks, including RL (Kirillov et al., 2023; Anantharaman
et al., 2018; Yuan et al., 2018; James et al., 2019; So et al., 2022). Recent advances in segmen-
tation foundation models (Zhang et al., 2023; Xie et al., 2021) enable streamlined and accelerated
adaptation to new domains with one/few-shot learning. In RL, a common approach to leveraging
segmentation models involves converting input RGB images into segmentation masks (James et al.,
2019; So et al., 2022; Wang et al., 2023; Zhong et al., 2024) or latent representations (Zhang et al.,
2025), improving robustness to complex scenes and domain randomization. However, this increases
computational overhead and the risk of failure if segmentation models malfunction. Our method
instead leverages segmentation masks as an auxiliary task, removing the reliance on segmentation
models at deployment while improving test-time performance, which is crucial since even small de-
lays can harm RL performance (Karamzade et al., 2024). While FOCUS (Ferraro et al., 2023) also
uses masked input as an auxiliary target, it focuses on learning disentangled representations rather
than handling distractions. Moreover, it provides only preliminary results with segmentation models
without analyzing their impact on downstream RL tasks.

3 Preliminaries

We consider a partially observable Markov decision process (POMDP) formalized as a tuple
(8,9, A,T,0,p0,R,7), consisting of states s € S, observations o € ), actions a € A, state
transition function 7 : § x A — A(S), observation function O : § — €, initial state distribution
po, reward function R : S x A — R, and discount factor . At time ¢, the agent does not have access
to the actual world state s;, but to the observation o; = O(s;), which in this paper we consider to
be a high-dimensional image. Our objective is to learn a policy 7(a¢|o<¢, a<¢) that achieves high
expected discounted cumulative rewards E[>, v'r], with r, = R (s, a;) and the expectation over
the joint stochastic process induced by the environment and the policy.

DREAMER (Hafner et al., 2020; 2021; 2023) is a broadly applicable MBRL method in which a world
model learns to represent environment dynamics in a latent state space (h, z) € H x Z, consisting of
deterministic and stochastic components respectively, from which rewards, observations, and future
latent states can be decoded. The components of the world model are:

Sequence model: = fo(ht—1,2e-1,a¢-1)

Observation encoder: zp ~ qg(ze|he, 0r)

Dynamics predictor: 2~ py(Z)he) (1)
Reward predictor: 7t ~ Do (7| he, 2¢)

Continuation predictor: Er ~ py(Etlhe, 2¢)

Observation decoder: Or ~ Py (0¢|hy, 2t),

where the encoder maps observations o; into a latent representation, the dynamics model emulates
the transition distribution in latent state space, the reward and continuation models respectively
predict rewards and episode termination, and the observation decoder reconstructs the input. The
concatenation of h; and zi, i.e. & = [hy; 2¢], serves as the model state. Given a starting state, an
actor—critic agent is trained inside the world model by rolling out latent-state trajectories. The world
model itself is trained by optimizing a weighted combination of three losses:

T
E((b) = E% Z(ﬁpred['pred((b) + 5dyn£dyn(¢) + Brepﬁrep(¢)) (2)
t=1
Epred(¢) = - 111P¢(0t|2t, he) — 1ﬂp¢(Tt|Zt, hy) — 1HP¢(Ct|Zt7 hy) 3)
Layn(¢) = max(1, KL[[qg(zt|he, 00)][| po(Zelhe) ) 4)
Lrep(¢) = max (1, KL[ gy (2¢/he, 0¢) [[[pg(2ehe)]]), (5)

where [-] denotes where gradients are stopped from backpropagating to the expression in brackets.
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Critically, the first component of Lp.q for reconstructing observations from world model states is
leveraged as a powerful heuristic to shape latent features. Under the assumption that observations
primarily contain task-relevant information, this objective is likely to encourage the latent state to
retain information critical for the RL agent. However, the opposite can also be true. If observations
are dominated by task-irrelevant information, the latent dynamics may become more complex by
incorporating features impertinent to decision-making. This can lead to wasted capacity in the latent
state representation (Lambert et al., 2020), drown the supervision signal in noise, and reduce the
sample efficiency.

Problem Setup. We consider environments where the latter case is true and observations contain
a large number of spurious variations (Zhu et al., 2023). Concretely, we consider some features
of states s; € S to be irrelevant for the control task. We assume that states s; can be decom-
posed into task-relevant components s?‘ € ST and task-irrelevant components s; € S~ such that
Sp = (szr, s;) €S =8 x 8. We follow prior work (Zhu et al., 2023; Fu et al., 2021; Bharad-
hwaj et al., 2022) in visual control under distraction and assume that (1) the reward is a function
only of the task-relevant component, i.e. R : ST x A — R; and (2) the forward dynamics of the
task-relevant part only depends on itself, 5,7, ; ~ (s, |s{,a;). Note that observations o; are a
function of both s;" and s; , thus we have O : St x S~ — Q.

Our goal is to learn effective latent representations [h¢; z¢] for task control. Ideally, this would mean
that the world model will only encode and simulate task-relevant state components s; in its latent
space without modeling unnecessary information in s, . To learn features pertaining to s?‘ , image
reconstruction can provide a rich and direct learning signal, but only when observation information
about s, is not drowned out by other information from s; . To overcome this pitfall, we propose
to apply a heuristic filter to reconstruction targets o, with the criteria that it minimizes irrelevant
information pertaining to s, while keeping task-relevant information about s;’.

4 Method

We build on DREAMER-V3 (Hafner et al., 2023) to explicitly model s, while attempting to avoid
encoding information about s, . In Section 4.1, we describe how we accomplish this by using do-
main knowledge to apply a task-relevance mask to observation reconstruction targets. In Section 4.2
we describe how we leverage segmentation mask foundation models to provide approximate masks
over task-relevant observation components. Finally, in Section 4.3, we propose a modified decoder
architecture and objective to mitigate noisy learning signals from incorrect mask predictions.

4.1 Using Segmentation Masks to Filter Image Targets

We first introduce our main assumption, that the task-relevant components of image observations are
easily identifiable with domain knowledge. In many real scenarios, it is often straightforward for a
practitioner to know what the task-related parts of an image are, e.g. objects necessary for achieving
a goal in object manipulation tasks. With this assumption, we propose a new reconstruction-based
auxiliary task that leverages domain knowledge of task-relevant regions. Instead of reconstruct-
ing the raw image observations (Fig. 1b) which may contain task-irrelevant distractions, we apply
a heuristic task-relevance segmentation mask over the image observation (Fig. 1c) to exclusively
reconstruct components of the image that are pertinent to control.

Since our new masked reconstruction target should contain only image regions relevant for achieving
the downstream task, our world model learns latent representations where a larger portion of the
features are useful to the RL agent. By explicitly excluding task-irrelevant observation components,
the latent dynamics also becomes simpler and more sample-efficient to learn than the original (more
complex, higher variance) dynamics on unfiltered observations. In simulations, ground-truth masks
of relevant observation components are often easily accessible, e.g., in MuJoCo (Todorov et al.,
2012) through added calls to the simulator API. We term the method trained with our proposed
replacement auxiliary task as Segmentation Dreamer (SD) and call the version trained with ground-
truth masks SDET.
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Figure 2: Filtering Lo loss to avoid training on false negatives in RGB labels. Lefi: Estimated
pixel locations (f) where the RGB target (c) is likely incorrectly masked out by the segmentation
model (e). Right: A world model equipped with two decoders, one for reconstructing task-relevant
masked RGB images and the other for binary masks, the targets for which are generated by a seg-
mentation model. RGB L; loss is selectively masked by the set difference between (d) and (e).
Latent representations (x;) in the world model are subjected to the training signal only from the
RGB branch. The binary branch is only utilized for selective Lo loss.

4.2 Leveraging Approximate Masks

A simulator with ground-truth masks for task-relevant regions is not always available. For such cases
where only RGB images are available from the environment, we propose to fine-tune a segmentation
mask foundation model to our domain and integrate its predictions into the SD training pipeline. Be-
low, we describe our method for training with approximate task-relevance masks, termed SD?*PP™%-.

As an offline process before training the world model, we fine-tune a segmentation model with a
small number of example RGB images and their mask annotations that indicate task-relevant image
regions. Recent advances in segmentation foundation models allow us to adapt a domain-specific
mask model with very few examples. For our experiments, we use the Personalized SAM (Per-
SAM) (Zhang et al., 2023) using one-shot adaptation and SegFormer (Xie et al., 2021) fine-tuned
with 5 and 10 examples. For the sake of controlled and reproducible evaluation, we extract these
RGB and mask training pairs from simulators, however, the sample size is small enough for expert
annotation. Although we use these specific foundation models, our method should also be compati-
ble with any semantic masking method. Additional details on fine-tuning these models are provided
in Appendix K. Once fine-tuning is complete, we incorporate the segmentation model into the SD
pipeline to create pseudo-labels as targets for our proposed auxiliary task.

4.3 Learning in the Presence of Mask Errors

Although foundation segmentation models generalize well to new scenarios (e.g., different poses,
occlusions), prediction errors are inevitable (Fig. 1d). Since each frame is processed independently,
segmentation predictions may flicker along trajectories. False negatives in task relevance are par-
ticularly detrimental when using naive Lo loss for image reconstruction, as missing relevant scene
elements in reconstruction targets can lead the encoder to learn incomplete representation, discarding
essential task-related information. This variability disrupts the learning of accurate representations
and dynamics in the world model.

Despite noisy targets, neural networks can self-correct if most labels are accurate (Han et al., 2018).
Additionally, DREAMER’s use of GRUs (Cho et al., 2014) provides temporal consistency even with
flickering targets. However, as shown in Fig. 2 (b)&(c), it is undesirable to propagate gradients
from regions where the observation has been incorrectly masked out. Allowing gradients from these
regions provides misleading signals and reinforces errors rather than correcting them. If we could
identify the incorrect regions in the reconstruction target, we could nullify the decoder’s Ly loss
there, a technique we call selective Lo loss.
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Since we cannot directly identify regions where the RGB target is incorrectly masked due to false
negatives, we estimate them. Preliminary experiments suggested that a binary mask decoder from
world model states (as an added auxiliary task) can be less prone to transient false negatives, unlike
RGB prediction, which tends to memorize noisy labels. Therefore, we propose training a world
model with two reconstruction tasks (Fig. 2, right): one decoding masked RGB images and the other
predicting task-relevance binary masks. Both use the foundation model’s binary mask, maskgys, to
construct targets. The RGB branch decodes masked RGB images, while the binary branch predicts
maskgyr. We denote the binary masks produced by the world model by maskgsp, where pixels
labeled true (rendered white) indicate task relevance.

To avoid training on incorrectly masked-out regions, we estimate where maskg); may be falsely neg-
ative by finding disagreements with maskgp. Specifically, we selectively nullify the RGB decoder
Lo loss for regions marked false in maskgy; but predicted true in masksp. This prevents training
on pixels that are potentially incorrectly masked out if they are still considered task-relevant by a
second predictor. Formally, the mask for selective Lo loss is the set difference between true pixel
locations in maskgp and maskgy:

pixel,, ;¢ = pixelgp \ pixelpy (6)

where pixel,,;¢, indicates pixels to nullify loss at, and pixelgp, and pixelg,; are pixels marked true
in maskgp and maskgyy, respectively.

Fig. 2 (d-f) shows examples of maskgp, maskgni, and pixel,, ;¢ See Appendix L for details
on obtaining maskgp. Our experiments indicate that selective Lo loss effectively overcomes noisy
segmentation labels and improves downstream agent performance.

Lastly, we observe better performance by blocking gradients from the binary mask decoding objec-
tive from propagating into the world model, so we apply a stop gradient to the mask decoder head
inputs (see Appendix F for ablations).

S Experiments

We evaluate our method on visual robotic control tasks from the DeepMind Control Suite
(DMC) (Tassa et al., 2018) and Meta-World (Yu et al., 2019). Since these benchmarks feature
simple backgrounds with minimal distractions, we introduce visual distractions by replacing the
backgrounds with random videos from the ‘driving car’ class in the Kinetics 400 dataset (Kay et al.,
2017), following prior work (Zhang et al., 2021; Nguyen et al., 2021; Deng et al., 2022). Details
on the environment setup and task visualizations are provided in Appendices G and A. In evalua-
tion, we roll out policies over 10 episodes and compute the average episode return. Unless otherwise
specified, we report the mean and standard error of the mean (SEM) over four independent runs with
different random seeds. All experiments use the default DREAMER-V3 hyperparameters. We also
evaluate our method in a real-world lane-following task, demonstrating that SD can learn a policy
that generalizes to unseen appearances at deployment.

5.1 DMC Experiments

We evaluate SD on six DMC tasks with varying contact dynamics, degrees of freedom, and reward
sparsity. For each task, models are trained with all methods for 1M environment steps generated by
500K policy decision steps with an action repeat of 2.

5.1.1 Comparison with DREAMER

We compare our methods, SDCT and SDP% | to the base DREAMER (Hafner et al., 2023) method.
Here, SD*P™* is denoted as SDYM, specifying the segmentation model used (FM) and the number
of fine-tuning examples (V). All methods are trained in distracting environments, except for the
DREAMER¥* baseline, which is trained in the original environment without visual distractions. In
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Figure 3: (a) Learning curves on six visual control tasks from DMC. Every method but
DREAMER¥ is trained on distracting environments. All curves show the mean over 4 seeds with
the standard error of the mean (SEM) shaded. (b) Segmentation quality during training (IoU) vs.
downstream task performance. Best viewed in color.

most cases, we consider DREAMER* as an upper bound for the performance of methods trained
with distractions. Similarly, SDST serves as an upper bound for SD#P™* with the performance gap
expected to decrease in the future as segmentation quality improves.

As shown in Fig. 3a, DREAMER fails across all tasks due to task-irrelevant information in RGB
reconstruction targets, which wastes latent capacity and complicates dynamics learning. In contrast,
SDCT achieves test returns comparable to DREAMER* by focusing on reconstructing essential fea-
tures and ignoring irrelevant components. Interestingly, SDT outperforms DREAMER* in Cartpole
Swingup, possibly because the original environment still contains small distractions (e.g., moving
dots) that DREAMER* is incentivized to model.

A limitation of SD is its reliance on accurate and correct prior knowledge to select task-relevant
components. In Cheetah Run, SD®T underperforms compared to DREAMER*, likely because we
only include the cheetah’s body in the mask, excluding the ground plate, which may be important
for contact dynamics. Visual examples and further experiments are in Appendices A and B.

For SD*P™% " we test with two foundation models: PerSAM adapted with one RGB example and
its GT mask, and SegFormer adapted with five such examples. Despite slower convergence due to
noisier targets, both SDFSAM and SD3E™ ychieve similar final performance to SDST in most
tasks. A failure case for SDY*SAM js Reacher Easy, where a single data point is insufficient to obtain
a quality segmentation for the small task-relevant objects.

5.1.2 Comparison with Baselines

We compare SD?PP™* with state-of-the-art methods, including DreamerPro (Deng et al., 2022),
RePo (Zhu et al., 2023), TIA (Fu et al., 2021), and TD-MPC2 (Hansen et al., 2023). Dreamer-
Pro incorporates prototypical representation learning in the DREAMER framework; RePo minimizes
mutual information between observations and latent states while maximizing it between states and
future rewards; TIA learns separate task-relevant and task-irrelevant representations that are com-
bined to decode observations; and TD-MPC2 decodes a terminal value function. Only TIA relies on
observation reconstruction. Further details are in Appendix M.

Our results in Fig. 3a show that our method consistently outperforms the baselines in performance
and sample efficiency. TIA underperforms in many tasks, requiring many samples to infer task-
relevant observations from rewards and needing exhaustive hyperparameter tuning. Even with opti-
mal settings, it may lead to degenerate solutions where a single branch captures all information. In
contrast, our method focuses on task-relevant parts without additional tuning by effectively inject-
ing prior knowledge. RePo performs comparably to ours in Cartpole Swingup but converges more
slowly and underperforms in other tasks.
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TD-MPC2 struggles significantly in distracting environments. We speculate that spurious correla-
tions from distractions introduce noise to value-function credit assignment that hinders represen-
tation learning. Our method mitigates this by directly supervising task-relevant features, yielding
more consistent and lower-variance targets. DreamerPro is the most competitive, demonstrating the
effectiveness of prototypical representation learning for control. However, it often requires more
environment interactions and converges to lower performance.

Notably, no prior work has successfully solved Cartpole Swingup with sparse rewards, underscoring
the challenge of inferring task relevance from weak signals. Our method achieves near-oracle per-
formance and is the only one to learn with sparse rewards amid distractions. This suggests potential
for training in real-world, distraction-rich environments without extensive reward engineering.

5.1.3 Ablation Study

We investigate the effects of the components in SD*P** by addressing: (1) the benefits of using
segmentation models for targets vs. input preprocessing; (2) the effectiveness of the selective Lo loss
compared to the naive Ly loss; and (3) the impact of the segmentation quality on RL performance. In
these experiments, we fine-tune PerSAM with a single data point for segmentation mask prediction.

Using segmentation masks for an auxiliary
task vs. input preprocessing. We create a vari-
ant of SDY*SAM that uses masked observations
for both inputs and targets, denoted in Tab. 1
by As Input. This variant is analogous to prior
methods (James et al., 2019; So et al., 2022) that
use segmentation models for input preprocess-

Table 1: Final performance of SD variants over
4 runs (mean + standard error). The highest
mean and any overlapping cells are highlighted.
While our method achieves the highest mean in
most tasks, only about half show statistically
significant improvements, with larger gains in
visually complex tasks than in simpler ones.

ing in control tasks. The results in Tab. 1 sug-

gest that SDYSAM | in addition to not requiring  Task SDErSAM  AgInput  Naive Lo
mask prediction at test-time, also achieves bet-  Cartpole Swingup 730 £75 565+108 719+ 62
ter test performance and lower variance. Using Cartpole Swingup Sparse 521492 457 + 151 408 + 114
. . . Cheetah Run 61935 52437 486+58
predicted masks as input is more prone to Seg-  Hopper Stand 846+ 27 689+30 790+ 51
mentation errors, restricting the agent’s percep- Reacher Easy 597+£97 6421116 415+50
Walker Run 730 £13  589+28 55751

tion when masks are incorrect and making train-
ing more challenging. In contrast, SD*P™* re-
ceives intact observations, with task-relevant denoising at the encoder level, leading to better state
abstraction. Further analysis of the test-time segmentation quality’s impact is in Appendix C.

Selective Lo loss vs. naive Lo loss. As shown in Tab. 1, SDY*SAM consistently outperforms the
Naive Ly variant, especially in complex tasks like Cheetah Run and Walker Run. Segmentation
models often miss embodiment components (Fig. 4, third row). With the naive Lo loss, the model
replicates these errors, leading to incomplete latent representations and harming dynamics learn-
ing (Fig. 4a, fourth row). In contrast, SD?P™* self-corrects by skipping the Lo computation where
PerSAM targets are likely wrong (Fig. 4b, fourth row). Fig. 4(c)&(d) show that the naive Lo loss
follows PerSAM’s trends, while the selective Ly loss recovers from poor recall with only a moderate
precision decrease.

Impact of segmentation quality on RL performance. Fig. 3b plots the training-time segmen-
tation quality against the RL agent’s test-time performance. Segmentation quality is measured by
Intersection over Union (IoU), which quantifies overlap between predicted and ground-truth masks.
Comparing three SD variants with different mask qualities (two estimated, one ground truth), we
observe that better segmentation tends to lead to higher RL performance, as accurate targets better
highlight task-relevant components. This suggests that improved segmentation models can enhance
agent performance in the absence of ground-truth masks. In Cartpole Swingup, one of two excep-
tions, the ToU difference between SDFSAM and SD3E™ is small, and the test returns may fall
within the margin of error. In Walker Run, the other exception, all variants show high segmentation
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Figure 4: (a)+(b) Qualitative comparison of SD trained with naive and selective L loss. Trajec-
tories are taken from each method’s train-time replay buffer, selected to have the same background.
Frames with PerSAM error are highlighted. The model trained with the selective Lo loss overcomes
errors in the target, whereas the one trained with the naive Lo loss reproduces target errors. (c)+(d)
show the precision and recall of PerSAM and the SD RGB decoder prediction. SD RGB predic-
tions are binarized using a threshold to compute recall and precision w.r.t. the ground-truth mask.
The data points used for plotting are from the same Cheetah Run training experiment as in (a)+(b).
The selective Lo loss significantly improves the recall with only a moderate impact on precision.

quality and reach near-optimal performance. Here, we hypothesize that a small amount of noise in
the target may act as a regularizer, contributing to marginally better downstream performance.

5.2 Meta-World Experiments

Object manipulation is a natural application for our method where prior knowledge can be applied
straightforwardly by identifying and masking task-relevant objects and robot embodiments. We
evaluate SD on six tasks from Meta-World (Yu et al., 2019), a popular benchmark for robotic ma-
nipulation. Depending on the difficulty of each task, we conduct experiments for 30K, 100K, and
1M environment steps, with an action repeat of 2 (details in Appendix H). Preliminary tests showed
that SegFormer performs well with few-shot learning on small objects. We fine-tune SegFormer

with 10 data points to estimate masks in these experiments.
Coffee-Button-V2 Drawer-Close-V2 Handle-Press-V2

Fig. 5 suggests that our approach outperforms — asool ______________ G
the baselines overall, with a more pronounced E,zooo
advantage in tasks involving small objects like = § 1w ' ‘ ol
Coffee-Button. Our method excels because it e
s : Env Steps led le4 led
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ing the reconstruction of unnecessary regions

that occupy much of the input. In contrast, W W

the baselines struggle as they often underesti- /_,J\JM rff/vM
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task-relevant objects. Among the baselines, or

. .. --- Dreamer* — SD —— DreamerPro TD-MPC2
RePo (Zhu et al., 2023) is the most competitive. Dreamer _ gpggofermer RePo
However, RePo performs poorly in a sparse re-

ward setup (see Appendix J). Figure 5: Learning curves on six visual robotic

manipulation tasks from Meta-World. All
curves show the mean over 4 seeds with the stan-

5.3 Duckiebot dard error of the mean shaded.

Lane-Following Experiments

Domain randomization enables training generalizable agents by exposing them to diverse scenarios,
allowing zero-shot transfer to unseen environments within the randomized range (Tobin et al., 2017;
Tang et al., 2024). For that purpose, randomization intentionally introduces noise, which can make
training harder, require more data, and sometimes fail with limited-capacity models (Fu et al., 2021).
On the other hand, too narrow a randomization range can limit generalization abilities and cause
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Table 2: Real-world evaluation

Method Real-world Return
DREAMER* -1722 + 144
DREAMER -119.7 £ 10.7
DREAMER (large) 3.9 +£23.1
SDrcB 106.2 =44
SDseg 116.2 +£ 5.1

(c) Test-time observations (real-world)

Figure 6: (a) Domain-randomized simulation observations with variations in background, fore-
ground color, texture, and layout. (b) Digital-twin observations generated using Gaussian splatting.
(c) Real-world environment observations. (d) Test-time performance in the simulated environment.
Table 2: Performance deploying each method in the real-world environment after 200k steps. We
present mean and SEM values over 4 seeds.

failures when agents are deployed outside that range. Ideally, an agent should be trained on a broad
range of perturbations without unnecessarily increasing model complexity or training difficulty.

Introducing domain randomization allows us, as designers, to control what constitutes a distraction,
and this design philosophy can also serve as prior knowledge for SD. We evaluate our method on a
robotic lane-following task in the Duckietown platform (Paull et al., 2017), where the objective is to
follow a marked lane on a looping track with a wheeled robot while minimizing deviations. We con-
duct training for this task in an Unreal Engine (Epic Games, 2024) simulation that employs domain
randomization across multiple factors, including background and foreground colors and textures,
lighting conditions, physics, and more (Fig. 6a). The training simulator offers segmentation map
rendering, enabling us to use ground-truth masks for training SD. Thus, in this section, SD refers to
SDST. Additional training details, such as the reward function and randomization dimensions, can
be found in Appendix I.

We evaluate models in two test environments. The first test environment is an instance of the sim-
ulation designed to be a digital-twin of the real-world environment, constructed using Gaussian
splatting (Kerbl et al., 2023), featuring a variation of colors, lighting, textures, layouts, and back-
grounds that is unseen in training (Fig. 6b). It enables reproducible and repeatable experiments
before real-world deployment. The second environment is the real-world track that the digital-twin
approximates, where we assess how well the trained model zero-shot transfers to real-world robot
conditions (Fig. 6¢).

Fig. 6d shows that SDrgp, which decodes task-relevant RGB pixels (i.e., pixels belonging to the
lane), learns a generalizable agent that trains effectively under rigorous domain randomization. Its
performance approaches that of DREAMER*, which is trained directly in the simulation test envi-
ronment. The reconstruction targets, which remove control-irrelevant pixels, effectively guide the
model to learn features that are invariant to background distractions. This result also suggests that
SD can, to some extent, tolerate foreground perturbations (e.g., lane colors, camera view) that are
not filtered out by the target images. A further exploration of SD under foreground perturbations to
task-relevant objects in DMC can be found in Appendix D.
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Another variant of our method, SDse,, decodes segmentation maps, rather than RGB pixels, as its
auxiliary task. Since this decoder target contains fewer distractions, this variant converges faster, as
the model is explicitly guided to ignore irrelevant foreground noise. Both variants of SD general-
ize well, with SDgrgp retaining visual details in foreground that can be beneficial for downstream
tasks, while SDge, enforces a more abstract representation for faster convergence; SDgrgp is prefer-
able when appearance cues aid decision-making, whereas SDge, suits scenarios where structural
consistency matters more. Appendix I presents sample decoding targets for each model.

On the other hand, DREAMER fails to train a driving agent after 200K steps, likely because it al-
locates capacity to modeling task-irrelevant background information introduced by randomization.
While increasing model capacity allows DREAMER to learn a better policy (dashed curve), it re-
quires significantly more samples to achieve an agent that successfully drives. The performance gap
between SDgrgp and DREAMER suggests that background distractions pose a particular challenge
during training, as they often occupy large portions of the pixel space and are dynamic. Encoding
background information in the latent space introduces task-irrelevant dynamics, increasing learning
complexity and leading to inefficient use of model capacity.

We deploy these models for 5 episodes each in the real-world environment after 200k steps of train-
ing and show average episode returns in Tab. 2. Although DREAMER* performs well in the simula-
tion test environment, its real-world deployment suffers due to visual disparity between the training
and testing environments. While the Gaussian splat simulation closely resembles the real world,
photometric properties such as brightness and hue are not perfectly aligned, preventing effective
zero-shot transfer. Similar to its performance in simulation, DREAMER fails to drive in the real
world and shows some improvement with a larger model capacity. In contrast, both variants of SD
successfully achieve zero-shot transfer to the real-world, despite encountering unseen appearances
and a small dynamics distribution shift during deployment. SD enables generalizable perception
and zero-shot transfer without introducing additional overhead at test time, making it particularly
practical for real-world applications.

6 Conclusion

We propose SD, a simple yet effective method for learning task-relevant features in model-based
reinforcement learning frameworks by using segmentation masks informed by domain knowledge.
Using ground-truth masks, SDST achieves performance comparable to undistracted DREAMER with
high sample efficiency in distracting environments given accurate prior knowledge. SDP™* uses
estimated masks from off-the-shelf one-shot or few-shot segmentation foundation models and em-
ploys a selective Lo loss. Experimental results across diverse domains, including a sim-to-real
lane-following task, suggest that our methods can be a practical and powerful tool for training gen-
eralizable, deployable agents in dynamic environments, with no additional overhead at test time.

The proposed methods achieve strong performance across diverse tasks with distractions and effec-
tively incorporate human input to indicate task relevance. This enables practitioners to readily train
an agent for their own purposes without extensive reward engineering. This work also advances
the integration of computer vision and RL by demonstrating how recent advances in segmentation
can help address challenges in visual control tasks. We discuss limitations and future directions in
Appendix O.
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A Visualization of Tasks

A.1 DeepMind Control suite (DMC)

Fig. 7 visualizes the six tasks in DMC (Tassa et al., 2018) used in our experiments. Each row
presents the observation from the standard environment, the corresponding observation with added
distractions, the ground-truth segmentation mask, and the RGB target with the ground-truth mask
applied. Cartpole Swingup Sparse and Cartpole Swingup share the same embodiment and dynam-
ics. Cartpole Swingup Sparse only provides a reward when the pole is upright, whereas Cartpole
Swingup continuously provides dense rewards weighted by the proximity of the pole to the upright
position. Reacher Easy entails two objects marked with different colors in the segmentation mask,
as shown in Fig. 7e 3rd column. Before passing the mask to SD, the mask is converted to a binary
format where both objects are marked as true as task-relevant.

(a

-

Cartpole Swingup

(b

-

Cartpole Swingup Sparse

T

(c) Cheetah Run

(d) Hopper stand

(e) Reacher Easy
(f) walker Run

Figure 7: DMC tasks. Left to right: (1) standard environment observations, (2) distracting environ-
ment observations, (3) ground-truth segmentation masks, and (4) RGB observations with ground-
truth masks applied. We use (4) as auxiliary reconstruction targets in SDET.
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A.2 Meta-World
Fig. 8 shows the six tasks from Meta-World-V2 used in our experiments. Meta-World is a realistic

robotic manipulation benchmark with challenges such as multi-object interactions, small objects,
and occlusions.

(a) Coffee-Button-v2

(b) Drawer-Close-V2

(c) Handle-Press-V2

Sl

(d) Button-Press-Topdown-V2

(e) Door-Open-V2

(f) Drawer-Open-V2

Figure 8: Meta-World tasks. Left to right: (1) standard environment observations, (2) distracting
environment observations, (3) ground-truth segmentation masks, and (4) RGB observations with
ground-truth masks applied. We use (4) as auxiliary reconstruction targets in SDT. Masks with
multiple classes for different objects are converted to binary masks (all non-background regions are
true and task-relevant) before use with SD.
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B The Impact of Prior Knowledge

We investigate the impact of accurate prior knowledge of task-relevant objects. Specifically, we
conduct additional experiments on Cheetah Run—the task showing the largest disparity between
DREAMER* and SD®T in Fig. 3a. In our primary experiment, we designated only the cheetah’s
body as the task-relevant object. However, since the cheetah’s dynamics are influenced by ground
contact, the ground plate should have also been considered task-relevant.

Fig. 9 (a—c) illustrates the observation with distractions, the auxiliary target without the ground plate,
and with the ground plate included, respectively. Fig. 9d compares SDCT trained with different
selections of task-relevant objects included in the masked RGB reconstruction targets. We show
that including the ground plate leads to faster learning and performance closer to that of the oracle.
This highlights the significant influence of prior knowledge on downstream tasks, suggesting that
comprehensively including task-relevant objects yields greater benefits.

Cheetah Run

1000
c 800
5
2 600
o
Eﬁ 400
P 200
(a) Observation (b) Target w/ (c) Target w/ 0
Input Ground-Truth w/o Ground-Truth w/ 3 6 9
Ground Plate Applied Ground Plate Applied
Env Steps le5
— - Dreamer* — SDST (w/o ground)
— Dreamer  — spG7 (w/ ground)

(d) Evaluation Return of SDCT with
Different Prior Knowledge

Figure 9: The impact of prior knowledge on Cheetah Run. (d) The mean over 4 seeds with the
standard error of the mean (SEM) is shaded.
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C The Impact of Test-Time Segmentation Quality on Performance

We investigate how test-time segmentation quality affects SD?PP™* as well as the As Input variation
that applies mask predictions to RGB inputs in addition to reconstruction targets. For this analysis,
we use PerSAM fine-tuned with a single data point for segmentation prediction. To measure seg-
mentation quality, we compute episodic segmentation quality by averaging over frame-level IoU.
In Fig. 10 we plot episode segmentation quality versus test-time reward on the evaluation episodes
during the last 10% of training time.

Fig. 10 illustrates that SD*P™* exhibits greater robustness to test-time segmentation quality com-
pared to the As Input variation, with the discrepancy increasing as the IoU decreases. This dispar-
ity primarily arises because As Input relies on observations restricted by segmentation predictions,
and thus its performance deteriorates quickly as the segmentation quality decreases. In contrast,
SDaProX- takes the original observation as input and all feature extraction is handled by the obser-
vation encoder, informed by our masked RGB reconstruction objective. Consequently, SDPPr*
maintains resilience to test-time segmentation quality.

An intriguing observation is that a poorly trained agent can lead to poor test-time segmentation
quality. For instance, Cartpole Swingup (Sparse) exhibits different segmentation quality distribu-
tions between SD?P™* and As Input. This discrepancy occurs because the sub-optimal agent often
positions the pole at the cart track edge, causing occlusion and hindering accurate segmentation
prediction by PerSAM.
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Figure 10: Test-time episodic reward vs PerSAM episodic IoU for SDY*SAM and As Input (SDFerSAM
with masked RGB observations as input). SDYSAM is more robust to test-time segmentation pre-
diction errors.
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D Robustness to Foreground Distractions

SD is primarily designed to improve world model learning by omitting task-irrelevant background
features from its latent state. In this section, we additionally investigate SD’s robustness to dis-
tractions that affect the task-relevant foreground. Specifically, on DMC Walker Run and Cartpole
Swingup, we test SD’s performance when training and testing under three types of visual pertur-
bations: (1) foreground occlusions, (2) color shifts, and (3) camera angle shifts. We find that the
performance of both SD and the segmentation models used to train SD is not significantly dimin-
ished by the inclusion of small foreground distractions. We first outline each of the distraction types
we experiment with and then discuss experimental results:

D.1 Foreground Distraction Details

Foreground Occlusion To simulate occlusions of task-relevant features, we introduce a moving
foreground distractor—a blue rectangle (Fig. 11 ) rendered near the center of the scene for 4 to 6
consecutive frames, appearing after every 18 to 22 frames. These intervals are uniformly sampled
each time the distractor appears, so approximately 25% of the image frames in an episode contain
the distractor. Its movement follows pixel-space trajectories defined by randomized Ax and Ay
values drawn from the interval (-3, 3), with new values sampled each time the distractor is rendered.
Although we only test with a blue rectangle, given the capabilities of visual foundation models
(VEMs), we expect our method to generalize well to a variety of foreground occluders with different
properties.

Figure 11: Examples of frames with foreground occlusion in the environment and corresponding
predictions from the segmentation model that remain robust to occlusions in the test set.

Color Shifts To simulate variations in the agent’s appearance or task-relevant objects, we apply
color perturbations following Stone et al. (2021), setting their proposed environment color shift hy-
perparameters to have a max delta of 0.1 and a step standard deviation of 0.0, resulting in a randomly
sampled, temporally-constant color shift throughout each episode (Fig. 12). These perturbations
mimic real-world factors like lighting variations during deployment and test the model’s ability to
generalize to such mismatches at deployment time.

Camera Angle Shifts To introduce variations in camera perspective, we similarly follow Stone
et al. (2021), applying a scaling factor of 0.1 which defines a viewing range of the camera, shifting
the camera view by a random amount in each episode (Fig. 13). These perturbations simulate real-
world scenarios where the agent’s viewpoint changes due to physical discrepancies and test the
model’s robustness to altered perspectives.
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Figure 12: Examples of color perturbations applied to the agent and corresponding predictions from
the segmentation model that remain robust to color changes in the test set.

Figure 13: Examples of camera angle perturbations and corresponding predictions from the seg-
mentation model that remain robust to camera view variations in the test set.

D.2 Results with Foreground Distractions

For each perturbation type, we train and test both the segmentation model and SD with domain
randomization over the distraction method’s parameters. We use the SegFormer foundation model
finetuned on 100 pairs of domain-randomized images in these experiments. We evaluate SD on the
same parameter distributions as used in training time.

Segmentation Model Robustness to Foreground Distractions Figures 11-13 show that the Seg-
Former model still effectively isolates task-relevant objects of interest despite challenges presented
by foreground occlusions, color shifts, and camera view changes. These findings align with our pri-
mary experiments on background distractions, further reinforcing that segmentation models provide
a robust strategy for guiding representation learning in RL under many types of domain randomiza-
tion.

SD Robustness to Foreground Distractions Unlike background distractions, foreground pertur-
bations cannot be fully filtered out and remain in the SD decoding target. While this might raise
concerns about wasted capacity by encoding spurious information, our results (Table 3) demonstrate
that SD still learns effective agent behavior with these perturbations applied. Notably, in envi-
ronments with color or camera view changes, our method, by focusing on agent-centric features,
outperforms Dreamer* trained in the unmodified environment.
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Standard Foreground Foreground Color  Camera Angle
Environment  Occlusions Occlusions Shifts Shifts
(Dreamer*) (SD) (SD Naive Ly Loss) (SD) (SD)
Walker Run 752 £9 740 £ 4 688 + 37 761 £3 752 £ 10
Cartpole Swingup 818 £ 52 860 £+ 2 852 £7 870 £ 4 863 £ 4

Table 3: Test returns comparing Dreamer* in the base environment with SD in modified environ-
ments where foreground distractions are applied. Despite additional variation added to task-relevant
features, SD’s performance is not significantly diminished compared to Dreamer’s performance in
the original environment. With color and camera angle shifts applied to SD only, SD still outper-
forms Dreamer*.

Additionally, the selective Ly loss proves highly effective in handling occlusions, enabling the re-
covery of occluded foreground agent features. We compare our default SD method against a version
with Naive Lo loss and see a large drop in test-time return when performing this ablation. This
highlights the versatility of selective Lo loss across different scenarios. While SD was originally
designed to mitigate distractions outside task-relevant objects, these results demonstrate its robust-
ness across a broader range of real-world perturbations.

E Segmentation Quality in Meta-World

Figure 14: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Drawer-Open-V2 in the test set.
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Figure 15: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Coffee-Button-V2 in the test set.

Figure 16: Examples of background perturbations and corresponding predictions from the segmen-
tation model on Button-Press-Topdown-V2 in the test set.
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F Ablation without Stop Gradient

Should the SD*P™* world model be shielded from gradients of the binary mask decoder head?

To estimate potential regions on RGB targets where task-relevant regions are incorrectly masked
out, we train a binary mask prediction head on the world model to help detect false negatives in
masks provided by the foundation model. We see better performance when gradients from this bi-
nary mask decoder objective are not propagated to the rest of the world model. Thus, the default
SDP* architecture is trained with the gradients of the binary mask branch stopped at its [h¢; 2]
inputs, and the latent representations in the world model are trained only by the task-relevant RGB
branch in addition to the standard DREAMER reward/continue prediction and KL-divergence be-
tween the dynamics prior and observation encoder posterior. Tab. 4 shows that the performance
drops significantly when training without stopping these gradients.

We also examine masks predicted by the binary mask decoder head in Fig. 17. Predictions are
coarser grained than their RGB counterparts, lacking details important for predicting intricate
forward dynamics. Overall, reconstructing RGB observations with task-relevance masks applied
demonstrates itself as a superior inductive bias to learn useful features for downstream tasks com-
pared to binary masks or raw unfiltered RGB observations.

Table 4: Final performance of SD and SD without stop gradient.

Task SDPerSAM - No SG

Cartpole Swingup 730 £75 439 £ 81
Cartpole Swingup Sparse 521 +£92 112+ 40
Cheetah Run 619+ 35 376 £50
Hopper Stand 846 +27 587 + 127
Reacher Easy 597 +£97 273+74
Walker Run 730 =13 407 £ 62

(e) Reacher Easy (f) Walker Run

Figure 17: From the top row to the bottom row: (1) ground-truth segmentation masks, (2) SDPro*
binary mask predictions, and (3) SD?P™* RGB predictions.
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G Distracting DMC Setup

We follow the DBC (Zhang et al., 2021) implementation to replace the background with color
videos. The ground plate is also presented in the distracting environment. We used hold-out videos
as background for testing. We sampled 100 videos for training from the Kinetics 400 training set of
the *driving car’ class, and test-time videos were sampled from the validation set of the same class.

H Distracting Meta-World Setup

We test on six tasks from Meta-World-V2. For all tasks, we use the corner3 camera viewpoint.
The maximum episode length for Meta-World tasks is 500 environment steps, with the action re-
peat of 2 (making 250 policy decision steps). We classify these tasks into easy, medium, and
difficult categories based on the training curve of DREAMER* (DREAMER trained in the stan-
dard environments). Coffee Button, Drawer Close, and Handle Press are classified as easy, and we
train baselines on these for 30K environment steps. Button Press Topdown (medium) is trained for
100K steps, and Door Open and Drawer Open (difficult) are trained for M environment steps.

I Duckiebot Setup

Environment Configuration In the Duckiebot Lane-Following domain, the agent is tasked with
driving quickly along the right lane of a looping track while staying close to the lane center. For
observations, we provide the current camera view as a size 64 x 64 RGB image. The action space is
a 2D continuous vector in [—1, 1]? representing target forward and yaw velocities. The agent starts
each episode in simulation at a random position on the right lane.

In simulation, the agent is rewarded in every step with a value in [0, 1] proportional to its velocity
along the center of right lane on the track. In each step that the agent deviates more than Scm from
the center of the lane, it instead receives a penalty of -1. To encourage smooth driving, the agent is
additionally penalized each step proportional to the magnitude of its rotational yaw velocity when
moving forward. If the agent drives off the track, the episode terminates, and the agent receives a
penalty of -100. Except upon driving out-of-bounds, the episode horizon is 200.

We evaluate rewards in the real environment by tracking the robot’s state with an HTC Vive motion
tracker. We then replay the agent’s states and actions in the Gaussian splat digital-twin simulation
of matching size and proportion to calculate equivalent simulation rewards. In real evaluation, we
use an episode horizon of 300. We start all real evaluation episodes from the same position on the
track.

Domain Randomization We apply domain randomization across four categories to promote ro-
bustness and generalization from simulation to the real robot:

* Background: Videos from the Kinetics 400 dataset (Kay et al., 2017) ‘Driving Car’ class are
played in the background to simulate task-irrelevant dynamics.

» Foreground appearance perturbations: We perturb the appearance of foreground objects, such as
lane color, lighting, and texture, to ensure the model can handle variations in visual appearance.

» Foreground geometry perturbations: We introduce variations in layout (i.e. line marker position-
ing) and camera view (e.g., tilting, varying field-of-view). This helps the agent generalize to
different scene layouts and camera configurations.

* Physics perturbations: We randomize physics parameters to facilitate zero-shot transfer from sim-
ulation to the real world. This is done by adding noise to actions and camera positions at each
step.

Auxiliary Task Target Visualization Fig. 18 visualizes sample auxiliary target images for

DREAMER (b), SDggB (c), and SDgeTg (d). Moving from (b) to (d), the target images become pro-
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(a) Input (b) DREAMER (c) SDSL, (d) SDg
Observations Target Images Target Images Target Images

Figure 18: Input observations and corresponding sample decoding target images for each model.

gressively less detailed while retaining task-relevant information, guiding the model to only learn
state features necessary for optimal control. For instance, (c) filters out background information,
while (d) introduces additional abstraction by hiding pixel values and retaining only layout infor-
mation. This promotes learning invariant features by ignoring task-irrelevant noise and guiding the
encoder to be robust to variations in foreground appearance. It is important to note that not all
types of perturbations can be hidden. For instance, all models must handle foreground geometry and
physics perturbations that are not filtered by the target images. Our experiments indicate that these
types of perturbations are relatively easier for the world models to learn and generalize from.

Training Details We train all models for 200K environment steps with an action repeat of 1. We
use the same hyperparameters as DREAMER-V 3, except for a reduced model size. Specifically, we
set RSSM.deter= 32, units= 32, and cnn_depth= 8§ for all models, except for DREAMER
(large), which uses RSSM.deter= 64, units= 64, and cnn_depth= 16.

All models except DREAMER* are trained in a domain-randomized simulation environment.
DREAMER¥ is trained in a Gaussian splat simulation environment. Both simulation environments
include the same physics and camera shake perturbations.

Policies are evaluated in two settings: (1) Gaussian splat simulation without physics perturbations,
and (2) the real-world environment with physics partially mismatched to simulation.

Training DREAMER longer We trained the standard DREAMER used in Section 5.3 for a longer
duration. The larger-capacity model eventually reaches performance comparable to DREAMER¥*,
while the smaller model still struggles to achieve the goal.

Lane Following (Sim Eval)

160

________

80 4=

—80 -
W
-1601 -~
0.0 15 3.0 4.5

Env Steps le5
—— Dreamer —= Dreamer (w/ larger capacity)

Sim Test Return
o
\

Figure 19: Train DREAMER for 500K environment steps.
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J Results on Meta-World with Sparse Rewards

We also evaluate on sparse reward variations of the distracting Meta-World environments where
a reward of 1 is only provided on timesteps when a success signal is given by the environment
(e.g. objects are at their goal configuration). Rewards are O in all other timesteps. The maximum
attainable episode reward is 250.

The sparse reward setting is more challenging because the less informative reward signal makes
credit assignment more difficult for the RL agent. Fig. 20 shows that our method consistently
achieves higher sample efficiency and better performance, showing promise for training agents
robust to visual distractions without extensive reward engineering. In Meta-World experiments,
TIA (Fu et al., 2021) is not included as it requires exhaustive hyperparameter tuning for new do-
mains and is the lowest-performing method in DMC in general.

Coffee-Button-V2-Sparse Drawer-Close-V2-Sparse Handle-Press-V2-Sparse
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Figure 20: Learning curves on six visual robotic manipulation tasks from Meta-World with sparse
rewards.

K Fine-tuning PerSAM and SegFormer

In this section, we describe how we fine-tune segmentation models and collect RGB and segmenta-
tion mask examples to adapt them.

PerSAM. Personalized SAM (PerSAM) (Zhang et al., 2023) is a segmentation model designed
for personalized object segmentation building upon the Segment Anything Model (SAM) (Kirillov
et al., 2023). This model is particularly a good fit for our SD use case since it can obtain a person-
alized segmentation model without additional training by one-shot adapting to a single in-domain
image. In our experiments, we use the model with ViT-T as a backbone.

SegFormer. We use 5 or 10 pairs of examples to fine-tune SegFormer (Xie et al., 2021) MiT-b0.

To collect a one-shot in-domain RGB image and mask example for DMC and MetaWorld experi-
ments, we sample a state from the initial distribution py and render the RGB observation. In the
few-shot scenario, we deploy a random agent in each environment to collect more diverse observa-
tions from reachable states.

To generate the associated masks for these states, we make additional queries to the simulation
rendering API. We represent the pixel values for background and irrelevant objects as false and
task-relevant objects as true. In multi-object cases, we may perform a separate adaptation operation
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for each task-relevant object, resulting in more than 2 mask classes. In such cases, before integrating
masks with SD#P* " we will combine the union of the mask classes for all pertinent objects as a
single true task-relevant class, creating a binary segmentation mask compatible with our method.

In cases where example masks cannot be programmatically extracted, because such a small number
of examples are required (1-10), it should also be very feasible for a human to use software to
manually annotate the needed mask examples from collected RGB images.

L Details on Selective L, Loss

The binary mask prediction branch in SD*P™* is equipped with the sigmoid layer at its output. In
order to obtain binary masksp, we binarize the SD binary mask prediction with a threshold of 0.9.

M Details on Baselines

It is known that RePo (Zhu et al., 2023) outperforms many earlier works (Fu et al., 2021; Hansen
et al., 2022; Zhang et al., 2021; Wang et al., 2022; Gelada et al., 2019) and that DreamerPro (Deng
et al., 2022) surpasses TPC (Nguyen et al., 2021). However, these two groups of works have been
using slightly different environment setups and have not been compared with each other despite
addressing the same high-level problem on the same DMC environments. In our experiments, we
evaluate the representatives in each cluster on a common ground (See Appendix G) and compare
them with our method.

In our experiments, we use hyperparameters used in the original papers for all the baselines, ex-
cept RePo (Zhu et al., 2023) in Meta-World. RePo does not have experiments on Meta-World in
which case we use hyperparameters used for Maniskill2 (Gu et al., 2023) which is another robot
manipulation benchmark.

N Extended Related work

There are several model-based RL approaches which also explore the introduction of new auxiliary
tasks. Dynalang (Lin et al., 2024) integrates language modeling as a self-supervised learning objec-
tive in world-model training. It shows impressive performance on benchmarks where the dynamics
can be effectively described in natural language. However, it is not trivial to apply this method in
low-level control scenarios such as locomotion control in DMC. Informed Dreamer (Lambrechts
et al., 2024) introduces an information decoder which uses privileged simulator information to de-
code a sufficient statistic for optimal control. This shares the idea of using additional information
available at training time with our method SDST. Although it can be effective on training in simu-
lation where well-shaped proprioceptive states exist, Informed Dreamer cannot be applied to cases
where such information is hard to obtain. In goal-conditioned RL, GAP (Nair et al., 2020) proposes
to decode the difference between the future state and goal state to help learn goal-relevant features
in the latent state space. SADA (Almuzairee et al., 2024) improves training stability and visual ro-
bustness by selectively applying augmentations to actor and critic inputs during Q-learning, while
our method manipulates the output space to learn task-relevant features that are robust to visual
perturbations.

O Limitations

Segmentation Dreamer achieves strong performance across diverse tasks in the presence of distrac-
tions and provides a human interface to indicate task relevance. This capability enables practitioners
to readily train an agent for their specific purposes without suffering from poor learning performance
due to visual distractions. However, there are several limitations to consider.
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First, since SD#P™* harnesses a segmentation model, it can become confused when a scene contains
distractor objects that resemble task-relevant objects. This challenge can be mitigated by combining
our method with approaches such as InfoPower (Bharadhwaj et al., 2022), which learns control-
lable representations through empowerment (Mohamed & Jimenez Rezende, 2015). This integra-
tion would help distinguish controllable task-relevant objects from those with similar appearances
but move without agent interaction.

Second, although we provide a preliminary exploration in Appendix D, our method does not ex-
plicitly address randomization in the visual appearance of fask-relevant objects, such as variations
in brightness, illumination, or color. Two observations of the same internal state but with differ-
ently colored task-relevant objects may be guided toward different latent representations because
our task-relevant "pixel-value" reconstruction loss forces them to be differentiated. Ideally, these
observations should map to the same state abstraction since they exhibit similar behaviors in terms
of the downstream task. Given that training with pixel-value perturbations on task-relevant objects is
easier compared to dealing with dominating background distractors (Stone et al., 2021), our method
is expected to manage such perturbations effectively without modifications. However, augmenting
our approach with additional auxiliary tasks based on behavior similarity (Zhang et al., 2021) would
further enhance representation learning and directly address this issue.

Finally, our approximation model faces scalability challenges when task-relevant objects constitute
an open set. For instance, in autonomous driving scenarios, obstacles are task-relevant but cannot
be explicitly specified. While our method serves as an effective solution when task-relevant objects
are easily identifiable, complementary approaches should be considered when this assumption does
not hold true.



